Prof. L.V. Zhuravlyova, N.V. Sokolnikova, T.A. Rogachova
Kharkiv National Medical University
Currently, all over the world, type 2 diabetes mellitus and the heart failure are developing into an epidemic. For the first time, diabetic cardiomyopathy as an independent diagnostic unit was described in 1972 by Shirley Rubler and colleagues. Currently, the most common phenotype of cardiomyopathy in diabetes is the restrictive type, which is characterized by the presence of diastolic left ventricular myocardial dysfunction and heart failure with preserved systolic function of the left ventricular myocardium. It was unexpected for the scientific world that tight glycemic control with insulin and sulfonylureas did not lead to the expected reduction in the risk of severe heart failure and cardiovascular death in type 2 diabetes mellitus. The effect of antidiabetic drugs on the risk of developing cardiovascular complications is being studied in an increasing number of clinical studies. In this review, we will try to summarize the main issues of the modern treatment of type 2 diabetes and the effect of sugar-lowering drugs on the development of heart failure.
Key Words: diabetes mellitus, heart failure, diabetic cardiomyopathy, Metformin, glitazones, incretins, sodium glucose transporter inhibitors 2.
https://dx.doi.org/10.15407/internalmed2020.01.022
For citing:
1. Журавлева, Л.В. Сердечная недостаточность у больных диабетической кардиомиопатией: современные методы лечения / Л.В. Журавлева, Н.В. Сокольникова, Т.А. Рогачева // Східноєвропейський журнал внутрішньої та сімейної медицини. – 2020. – № 1. – С. 22-27. doi: 10.15407/internalmed2020.01.02
2. Zhuravlyova LV, Sokolnikova NV, Rogachova TA. [Heart failure in patients with diabetic cardiomyopathy: modern methods of treatment]. Shidnoevr. z. vnutr. simejnoi med. 2020;1:22-27. doi: 10.15407/internalmed2020.01.022.
References:
1. Farmakis D, Stafylas P, Giamouzis G, Maniadakis N, Parissis J. The medical and socioeconomic burden of heart failure: A comparative delineation with cancer. International Journal of Cardiology. 2016;203:279-281. https://doi.org/10.1016/j.ijcard.2015.10.172
https://doi.org/10.1016/j.ijcard.2015.10.172
2. Becher PM, Fluschnik N, Blankenberg S, Westermann D. Challenging aspects of treatment strategies in heart failure with preserved ejection fraction: “Why did recent clinical trials fail?”. World Journal of Cardiology. 2015;7(9):544. https://doi.org/10.4330/wjc.v7.i9.544
https://doi.org/10.4330/wjc.v7.i9.544
3. Lombardi C, Spigoni V, Gorga E, Dei Cas A. Novel insight into the dangerous connection between diabetes and heart failure. Herz. 2016;41(3):201-207. https://doi.org/10.1007/s00059-016-4415-7
https://doi.org/10.1007/s00059-016-4415-7
4. Kristensen SL, Mogensen UM, Jhund PS, Petrie MC, Preiss D, Win S, Kober L, McKelvie RS, Zile MR, Anand IS, Komajda M, Gottdiener JS, Carson PE, McMurray JJV. Clinical and Echocardiographic Characteristics and Cardiovascular Outcomes According to Diabetes Status in Patients With Heart Failure and Preserved Ejection Fraction. Circulation. 2017;135(8):724-735. https://doi.org/10.1161/circulationaha.116.024593
https://doi.org/10.1161/CIRCULATIONAHA.116.024593
5. Dei C, Fonarow G, Gheorghiade M, Butler J. Concomitant Diabetes Mellitus and Heart Failure. Current Problems in Cardiology. 2015;40(1):7-43. https://doi.org/10.1016/j.cpcardiol.2014.09.002
https://doi.org/10.1016/j.cpcardiol.2014.09.002
6. Seferovic P, Paulus W. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. European Heart Journal. 2015;36(27):1718-1727. https://doi.org/10.1093/eurheartj/ehv134
https://doi.org/10.1093/eurheartj/ehv134
7. Russo I, Frangogiannis N. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. Journal of Molecular and Cellular Cardiology. 2016;90:84-93. https://doi.org/10.1016/j.yjmcc.2015.12.011
https://doi.org/10.1016/j.yjmcc.2015.12.011
8. Lambert R, Srodulski S, Peng X, Margulies KB, Despa F, Despa S. Intracellular Na + Concentration ([Na + ] i ) Is Elevated in Diabetic Hearts Due to Enhanced Na + -Glucose Cotransport. Journal of the American Heart Association. 2015;4(9). https://doi.org/10.1161/jaha.115.002183
https://doi.org/10.1161/JAHA.115.002183
9. Pereira L, Ruiz-Hurtado G, Rueda A, Mercadier J, Benitah J, Gómez M. Calcium signaling in diabetic cardiomyocytes. Cell Calcium. 2014;56(5):372-380. https://doi.org/10.1016/j.ceca.2014.08.004
https://doi.org/10.1016/j.ceca.2014.08.004
10. Taegtmeyer H, Beauloye C, Harmancey R, Hue L. Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. American Journal of Physiology-Heart and Circulatory Physiology. 2013;305(12):1693-1697. https://doi.org/10.1152/ajpheart.00854.2012
https://doi.org/10.1152/ajpheart.00854.2012
11. Eriksson L, Nystrom T. Antidiabetic Agents and Endothelial Dysfunction – Beyond Glucose Control. Basic & Clinical Pharmacology & Toxicology. 2015;117(1):15-25. https://doi.org/10.1111/bcpt.12402
https://doi.org/10.1111/bcpt.12402
12. Rena G, Pearson E, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia. 2013;56(9):1898-1906. https://doi.org/10.1007/s00125-013-2991-0
https://doi.org/10.1007/s00125-013-2991-0
13. Amy R. Cameron, Vicky L. Morrison, Levin D, Mohan M, Forteath C, Beall C, McNeilly AD, Balfour DJK, Savinko T, Wong A, Viollet B, Sakamoto K, Fagerholm S, Foretz M, Lang C, Rena G. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circulation Research. 2016;119(5):652-665. https://doi.org/10.1161/circresaha.116.308445
https://doi.org/10.1161/CIRCRESAHA.116.308445
14. Crowley M, Diamantidis C, McDuffie J, Cameron B, Stanifer J, Mock C, Wang X, Tang S, Nagi A, Kosinski A, Williams J. Clinical Outcomes of Metformin Use in Populations With Chronic Kidney Disease, Congestive Heart Failure, or Chronic Liver Disease. Annals of Internal Medicine. 2017;166(3):3-191. https://doi.org/10.7326/m16-1901
https://doi.org/10.7326/M16-1901
15. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016:18;891-975. https://doi.org/10.1093/eurheartj/ehw128
https://doi.org/10.1093/eurheartj/ehw128
16. Goltsman I, Khoury E, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure?. Pharmacology & Therapeutics. 2016;168:75-97. http://dx.doi.org/10.1016/j.pharmthera.2016.09.007
https://doi.org/10.1016/j.pharmthera.2016.09.007
17. Zhang Z, Zhang X, Korantzopoulos P, Letsas K, Tse G, Gong M, Meng L, Li G, Liu T. Thiazolidinedione use and atrial fibrillation in diabetic patients: a meta-analysis. BMC Cardiovascular Disorders. 2017;17(1). http://dx.doi.org/10.1186/s12872-017-0531-4
https://doi.org/10.1186/s12872-017-0531-4
18. Hernandez A, Usmani A, Rajamanickam A, Moheet A. Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. American Journal Cardiovascular Drugs. 2011;11(2):115-128. http://dx.doi.org/10.2165/11587580-000000000-00000.
https://doi.org/10.2165/11587580-000000000-00000
19. Toprani A, Fonseca V. Thiazolidinediones and congestive heart failure in veterans with type 2 diabetes. Diabetes, Obesity and Metabolism. 2011;13(3):276-280. http://dx.doi.org/10.1111/j.1463-1326.2010.01348.x
https://doi.org/10.1111/j.1463-1326.2010.01348.x
20. Erdmann E, Charbonnel B, Wilcox R, Skene A, Massi-Benedetti M, Yates J, Tan M, Spanheimer R, Standl E, Dormandy J. Pioglitazone Use and Heart Failure in Patients With Type 2 Diabetes and Preexisting Cardiovascular Disease: Data from the PROactive Study (PROactive 08). Diabetes Care. 2007;30(11):2773-2778. http://dx.doi.org/10.2337/dc07-0717
https://doi.org/10.2337/dc07-0717
21. Marso S, Daniels G, Brown-Frandsen K, Kristensen P, Mann J, Nauck M, Nissen S, Pocock S, Poulter N, Ravn L, Steinberg W, Stockner M, Zinman B, Bergenstal R, Buse J. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine. 2016;375(4):311-322. http://dx.doi.org/10.1056/nejmoa1603827
https://doi.org/10.1056/NEJMoa1603827
22. Ussher J, Baggio L, Campbell J, Mulvihill E, Kim M, Kabir M, Cao X, Baranek B, Stoffers D, Seeley R, Drucker D. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Molecular Metabolism. 2014;3(5):507-517. http://dx.doi.org/10.1016/j.molmet.2014.04.009
https://doi.org/10.1016/j.molmet.2014.04.009
23. Green J, Bethel M, Armstrong P, Buse J, Engel S, Garg J, Josse R, Kaufman K, Koglin J, Korn S, Lachin J, McGuire D, Pencina M, Standl E, Stein P, Suryawanshi S, Van de Werf F, Peterson E, Holman R. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine. 2015;373(3):232-242. http://dx.doi.org/10.1056/nejmoa1501352
https://doi.org/10.1056/NEJMoa1501352
24. Jorsal A, Kistorp C, Holmager P, Tougaard R, Nielsen R, Hänselmann A, Nilsson B, Møller J, Hjort J, Rasmussen J, Boesgaard T, Schou M, Videbaek L, Gustafsson I, Flyvbjerg A, Wiggers H, Tarnow L. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. European Journal of Heart Failure. 2016;19(1):69-77. http://dx.doi.org/10.1002/ejhf.657.
https://doi.org/10.1002/ejhf.657
25. Margulies K, Hernandez A, Redfield M, Givertz M, Oliveira G, Cole R, Mann D, Whellan D, Kiernan M, Felker G, McNulty S, Anstrom K, Shah M, Braunwald E, Cappola T. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction. JAMA. 2016;316(5):500. http://dx.doi.org/10.1001/jama.2016.10260
https://doi.org/10.1001/jama.2016.10260
26. Heerspink H, Perkins B, Fitchett D, Husain M, Heerspink H, Perkins B, Fitchett D, Husain M, Cherney D. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752-772. http://dx.doi.org/10.1161/circulationaha.116.021887.
https://doi.org/10.1161/CIRCULATIONAHA.116.021887
27. Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, Broedl U, Woerle H. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. Journal of Clinical Investigation. 2014;124(4):499-508. http://dx.doi.org/10.1172/jci75754
https://doi.org/10.1172/JCI75754
28. Baartscheer A, Schumacher C, Wüst R, Fiolet J, Stienen G, Coronel R, Zuurbier C. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2016;60(3):568-573. http://dx.doi.org/10.1007/s00125-016-4134-x
https://doi.org/10.1007/s00125-016-4134-x
29. Clancy C, Chen-Izu Y, Bers D, Belardinelli L, Boyden P, Csernoch L, Despa S, Fermini B, Hool L, Izu L, Kass R, Lederer W, Louch W, Maack C, Matiazzi A, Qu Z, Rajamani S, Rippinger C, Sejersted O, O’Rourke B, Weiss J, Varró A, Zaza A. Deranged sodium to sudden death. The Journal of Physiology. 2015;593(6):1331-1345. http://dx.doi.org/10.1113/jphysiol.2014.281204
https://doi.org/10.1113/jphysiol.2014.281204
30. Chilton R, Tikkanen I, Cannon C, Crowe S, Woerle H, Broedl U, Johansen O. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes, Obesity and Metabolism. 2015;17(12):1180-1193. http://dx.doi.org/10.1111/dom.12572
https://doi.org/10.1111/dom.12572
31. Bavry A, Bhatt D. Dapagliflozin in Patients With Heart Failure and Reduced Ejection Fraction – DAPA-HF. American College of Cardiology. 2019.
32. McMurray J, Solomon S, Docherty K, Jhund P. The Dapagliflozin And Prevention of Adverse outcomes in Heart Failure trial (DAPA-HF) in context. European Heart Journal. 2020. http://dx.doi.org/10.1093/eurheartj/ehz916
https://doi.org/10.1093/eurheartj/ehz916
33. Singh J, Fathi A, Vickneson K, Mordi I, Mohan M, Houston J, Pearson E, Struthers A, Lang C. Research into the effect Of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design. Cardiovascular Diabetology. 2016;15(1):97. http://dx.doi.org/10.1186/s12933-016-0419-0
https://doi.org/10.1186/s12933-016-0419-0
34. van Melle J, Bot M, de Jonge P, de Boer R, van Veldhuisen D, Whooley M. Diabetes, Glycemic Control, and New-Onset Heart Failure in Patients With Stable Coronary Artery Disease: Data from the Heart and Soul Study. Diabetes Care. 2010;33(9):2084-2089. http://dx.doi.org/10.2337/dc10-0286
https://doi.org/10.2337/dc10-0286
35. Belovol AN, Knjaz’kova II. Serdechno-sosudistye zabolevanija i saharnyj diabet. Diabetologija. Tireodologija. Metabolicheskie rasstrojstva. 2013;3/4:30-32. Russian.
36. Zhuravlyova LV, Sokol’nikova NV, Filonenko MV, Rogachova TA. Interlejkin-1β i interlejkin-6 novye markery metabolicheskih narushenij pri saharnom diabete 2 tipa . Georgian Medical News. 2019;2:82-86. Russian.