The importance of vaspin in external and internal secretory activity of the pancreas.

 D. Pylov

Kharkiv National Medical University, Department of Internal Medicine №3 and Endocrinology

To analyze the data of the scientific literature on the importance of vaspin as a pathogenetic link in the development of insufficiency of exocrine function of the pancreas in type 2 diabetes patients in combination with chronic pancreatitis and. Literary sources were searched in the scientometric databases Scopus and Web of Science, using the electronic search system Pubmed, mainly for the last 5 years. The search terms were: “type 2 diabetes”, “chronic pancreatitis”, “pancreas”, “exocrine function of the pancreas”, “obesity”, “vaspin”, “type 2 diabetes mellitus”, “pancreas », « obesity »,« vaspin ». An increase in the incidence of chronic pancreatitis and type 2 diabetes mellitus, as well as its severe complications, which are often associated with insulin resistance, hyperinsulinemia. Comorbid conditions can contribute to dysfunction of the pancreas. The existing relationships between vaspin level, insulin resistance, type 2 diabetes mellitus and chronic pancreatitis are not well understood. Many authors see the value and information content of vaspin as a biomarker for diagnosing these diseases and predicting treatment outcomes. The study of the effects and mechanisms of action of vaspin is the basis for determining new targets for the treatment of diabetes mellitus and chronic pancreatitis, both in isolated pathology and in combination.

Key Words: type 2 diabetes mellitus, chronic pancreatitis, pancreas, exocrine function of the pancreas, obesity, vaspin

References:

1. Gubergrits NB. Kazyulin AN. Metabolicheskayaaya pankreatologiya. Donetsk: Lebed; 2011. 514 s.

2. DeSouza SV, Singh RG, Yoon HD, Murphy R, Plank LD, Petrov MS. Pancreas volume in health and disease: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol. 2018; 12(8): 757-766.
https://doi.org/10.1080/17474124.2018.1496015

3. Daminova1 LT, Muminova SU. Diabetes mellitus and exocrine pancreatic insufficiency (review of literature). Mìžnarodnij endokrinologìčnij žurnal. 2018; 1: 116-119.
https://doi.org/10.22141/2224-0721.14.1.2018.127093

4. Maev IV, Kazyulin AN, Kucheryavyj YuA. Hronicheskij pankreatit. Moskva: Medicina; 2005. 504 s.

5. Komissarenko IA. Polimorbidnost i metabolicheskij sindrom u pozhilyh. Klinicheskaya gerontologiya. 2009; 1: 29-38.

6. Gubergric NB, Fomenko PG, Kolkina VYa. Vneshnesekretornaya nedostatochnost podzheludochnoj zhelezy pri saharnom diabete. Vestnik Kluba pankreotologov. 2015; 2: 8-14.

7. Ferrer R,Medrano J, Diego M, Calpena R, Graells L, Moltó M, et al. Effect of exogenous insulin and glucagon on exocrine pancreatic secretion in rats in vivo/ Int J Pancreatol. 2000; 28 (1): 67-75.
https://doi.org/10.1385/IJGC:28:1:67

8. Sasson A, Rachi E, Sakhneny L, Baer D, Lisnyansky M, Epshtein A, et al. Islet Pericytes Are Required for β-Cell Maturity. Diabetes. 2016; 65(10): 3008-14.
https://doi.org/10.2337/db16-0365

9. Piciucchi M, Capurso G, Archibugi L, Delle Fave MM, Capasso M, Delle Fave G. Exocrine pancreatic insufficiency in diabetic patients: prevalence, mechanisms, and treatment. Int J Endocrinol. 2015; 2015: 595649.
https://doi.org/10.1155/2015/595649

10. Mozheiko LA. Nfluence of diabetes mellitus on exocrine pancreas. Part 2. Morphofunctional changes of the exocrine pancreas in diabetes mellitus. Journal of the Grodno State Medical University. 2016; 3: 18-23.

11. Chandra R, Liddle RA. Modulation of pancreatic exocrine and endocrine secretion. Curr Opin Gastroenterol. 2013; 29(5): 517-22.
https://doi.org/10.1097/MOG.0b013e3283639326

12. Ismailov SI, Nazyrov FG, Azizov BA. Carbohydrate metabolism disorders in patients with chronic pancreatitis. Mezhdunarodnyj endokrinologicheskij zhurnal. 2014; 1: 25- 28.

13. Mozheiko LA. Nfluence of diabetes mellitus on exocrine pancreas. Part 1. Morphofunctional changes of the exocrine pancreas in diabetes mellitus. Journal of the Grodno State Medical University. 2016; 1: 17-243.

14. GFerfeckaja EV, Pits LO. Quality of life of patients with chronic pancreatitis, combined with obesity and type 2 diabetes mellitus. Gatroenterologiya Sankt-Peterburga. 2018; 3: 52-55.

15. Lobanov MV. Saharnyj diabet na fone pankreatita. Voennaya medicina. 2017; 3: 123-130.

16. Yu TY, Wang CY. Impact of non-alcoholic fatty pancreas disease on glucose metabolism. J Diabetes Investig. 2017; 8(6): 735-747.
https://doi.org/10.1111/jdi.12665

17. Pimanov SI. Pancreatic steatosis: occurs often, notes rarely. Lechebnoe delo. 2016; 2: 58-62.

18. Kucheryavyj YuA, Maev IV, Kazyulin AN, Salnikova EA, Sviridova AB, Ovlashenko EI., i dr. Ocenka trofologicheskogo statusa u bolnyh hronicheskim biliarnozavisimym pankreatitom v ramkah retrospektivnogo issledovaniya. Rossijskij zhurn. gastroenterologii, gepatologii, koloproktologii. 2007; 1: 83.

19. Zhuravleva LV, Shehovcova YuA. Izmeneniya lipidnogo profilya pri izolirovannom i sochetannom techenii hronicheskogo pankreatita i saharnogo diabeta tipa 2. Eksperimentalnaya i klinicheskaya gastroenterologiya. 2014; 5(105): 55.

20. Shekhovtsova YuO. The peculiarities of the clinical manifestations of chronic pancreatitis in patients with type 2 diabetes mellitus in combination with obesity. Suchasna gastroenterologiya. 2014; 5(79): 81-86.

21. Ivashkin VT, Shifrin OS, Sokolina IA. Hronicheskij pankreatit i steatoz podzheludochnoj zhelezy. Moskva: Literatura; 2012. 200 s.

22. Gubergric NB., Lukashevich GM., Golubova OA. i dr. Pankreatogennyj saharnyj diabet. Rossijskij zhurnal gastroenterologii, gepatologii, koloproktologii. 2007; 6: 11-16.

23. Lew D, Afghani E, Pandol S. Chronic Pancreatitis: Current Status and Challenges for Prevention and Treatment. Dig Dis Sci. 2017; 62(7): 1702-1712.
https://doi.org/10.1007/s10620-017-4602-2

24. Vonlaufen A, Phillips PA, Xu Z, Zhang X, Yang L, Pirola RC, et al. Withdrawal of alcohol promotes regression while continued alcohol intake promotes persistence of LPS-induced pancreatic injury in alcohol-fed rats. Gut. 2011; 60: 238-246.
https://doi.org/10.1136/gut.2010.211250

25. Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, et al. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol. 2017; 23(3): 382-405.
https://doi.org/10.3748/wjg.v23.i3.382

26. Rosso D, Carnazzo G, Giarelli L, Motta L, Maugeri D. Atherosclerosis and pancreatic damage. Arch Gerontol Geriatr. 2001; 32(2): 95-100.
https://doi.org/10.1016/S0167-4943(00)00088-1

27. Gullo L, Stella A, Labriola E, et al. Cardiovascular lesions in chronic pancreatitis. Digest Dis Sci. 1982; 27: Р. 716.
https://doi.org/10.1007/BF01393767

28. de la Iglesia D, Vallejo-Senra N, López-López A, IglesiasGarcia J, Lariño-Noia J, Nieto-García L, et al. Pancreatic exocrine insufficiency and cardiovascular risk in patients with chronic pancreatitis: A prospective, longitudinal cohort study. J Gastroenterol Hepatol [Internet]. 2018. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30156337/.
https://doi.org/10.1111/jgh.14460

29. Vanjiappan S, Hamide A, Ananthakrishnan R, Periyasamy SG, Mehalingam V. Nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and its association with cardiovascular disease. Diabetes Metab Syndr. 2018; 12(4): 479-482.
https://doi.org/10.1016/j.dsx.2018.01.001

30. Bakulin IG, Sandler YuG, Vinnitskayа EV, Keiyan VA, Rodionova SV, Rotin DL. Diabetes mellitus and nonalcoholic fatty liver disease: The verges of contingency. Terapevticheskij arhiv. 2017; 2: 59-65.
https://doi.org/10.17116/terarkh201789259-65

31. Aijaz Ahmed MD, Ryan B. Perumpail M.D. Stephen A. Harrison M.D. High prevalence of hepatic fibrosis in the setting of coexisting diabetes and hepatic steatosis: A case for selective screening in the general population? Hepatology. 2016; 63(1): 20-22.
https://doi.org/10.1002/hep.28277

32. Armstrong MJ, Hazlehurst JM, Parker R, Koushiappi E, Mann J, Khan S, et al. Severe asymptomatic non-alcoholic fatty liver disease in routine diabetes care; a multi-disciplinary team approach to diagnosis and management. QJM. 2014; 107(1): 33-41.
https://doi.org/10.1093/qjmed/hct198

33. Hazlehurst JM, Woods C, Marjot T, et al. Non-alcoholic fatty liver disease and diabetes. Metabolism. 2016; 65(8):1096-108.
https://doi.org/10.1016/j.metabol.2016.01.001

34. Guglielmi V, Sbraccia P. Type 2 diabetes: Does pancreatic fat really matter? Diabetes Metab Res Rev. 2018; 34(2). doi: 10.1002/dmrr.2955.
https://doi.org/10.1002/dmrr.2955

35. Feldman M, Friedman LS, Brandt LJ. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. 10th ed. Philadelphia: Elsevier; 2016, p. 1428-1441.

36. Soeda J, Mouralidarane A, Cordero P, Li J, Nguyen V, Carter R, et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J Physiol Biochem. 2016; 72: 281-291.
https://doi.org/10.1007/s13105-016-0476-6

37. Saisho Y, Butler AE, Meier JJ, Monchamp T, Allen-Auerbach M, Rizza RA, Butler PC. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat. 2007; 20: 933-942.
https://doi.org/10.1002/ca.20543

38. Szczepaniak LS, Victor RG, Mathur R, Nelson MD, Szczepaniak EW, Tyer N, et al. Pancreatic steatosis and its relationship to β-cell dysfunction in humans: racial and ethnic variations. Diabetes Care. 2012; 35: 2377-2383.
https://doi.org/10.2337/dc12-0701

39. Toledo-Corral CM, Alderete TL, Hu HH, Nayak K, Esplana S, Liu T, et al. Ectopic fat deposition in prediabetic overweight and obese minority adolescents. J Clin Endocrinol Metab. 2013; 98: 1115-1121.
https://doi.org/10.1210/jc.2012-3806

40. Zhao ZZ, Xin LL, Xia JH, Yang SL, Chen YX, Li K. Longterm High-fat High-sucrose Diet Promotes Enlarged Islets and β-Cell Damage by Oxidative Stress in Bama Minipigs. Pancreas. 2015; 44: 888-895.
https://doi.org/10.1097/MPA.0000000000000349

41. Tushuizen ME, Bunck MC, Pouwels PJ, Bontemps S, van Waesberghe JH, Schindhelm RK, Mari A, Heine RJ, Diamant M. Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care. 2007; 30: 2916- 2921.
https://doi.org/10.2337/dc07-0326

42. Heni M, Machann J, Staiger H, Schwenzer NF, Peter A, Schick F, Claussen CD, Stefan N, Häring HU, Fritsche A. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev. 2010; 26: 200-205.
https://doi.org/10.1002/dmrr.1073

43. Della Corte C, Mosca A, Majo F, Lucidi V, Panera N, Giglioni E, et al. Nonalcoholic fatty pancreas disease and Nonalcoholic fatty liver disease: more than ectopic fat. Clin Endocrinol (Oxf). 2015; 83: 656-662.
https://doi.org/10.1111/cen.12862

44. Chen DL, Liess C, Poljak A, Xu A, Zhang J, Thoma C, et al. Phenotypic Characterization of Insulin-Resistant and InsulinSensitive Obesity. J Clin Endocrinol Metab. 2015; 100: 4082- 4091.
https://doi.org/10.1210/jc.2015-2712

45. Lingvay I, Esser V, Legendre JL, Price AL, Wertz KM, AdamsHuet B, et al. Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab. 2009; 94: 4070-4076.
https://doi.org/10.1210/jc.2009-0584

46. Saisho Y, Butler AE, Meier JJ, et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat. 2007; 20: 933-942.
https://doi.org/10.1002/ca.20543

47. Yamazaki H, Tsuboya T, Katanuma A, Kodama Y, Tauchi S, Dohke M, et al Lack of independent association between fatty pancreas and incidence of type 2 diabetes mellitus: 5‐year Japanese cohort study. Diabetes Care 2016; 39: 1677-1683.
https://doi.org/10.2337/dc16-0074

48. Catanzaro R, Cuffari B, Italia A, Marotta F. Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease. World J Gastroenterol. 2016; 22(34): 7660-75.
https://doi.org/10.3748/wjg.v22.i34.7660

49. Blüher M. Vaspinin obesity and diabetes: pathophysiological and clinical significance. Endocrine. 2012; 41(2): 176-182.
https://doi.org/10.1007/s12020-011-9572-0

50. Körner A, Neef M, Friebe D, et al. Vaspin is related to gender, puberty and deteriorating insulin sensivity in children. Int J Obes. 2011; 35(4): 578-586.
https://doi.org/10.1038/ijo.2010.196

51. Hida K, Wada J, Eguchiet J, al. Visceral adipose tissuederived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A. 2005; 102: 10610-10615.
https://doi.org/10.1073/pnas.0504703102

52. Klöting N, Kovacs P, Kern M, et al. Central vaspin administration acutely reduces food intake and has sustained blood glucose-lowering effects. Diabetologia. 2011; 54(7): 1819-23.
https://doi.org/10.1007/s00125-011-2137-1

53. Klöting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun. 2006; 339(1): 430-6.
https://doi.org/10.1016/j.bbrc.2005.11.039

54. Cakal E, Ustun Y, Engin-Ustun Y, et al. Serum vaspin and C-reactive protein levels in women with polycystic ovaries and polycystic ovary syndrome. Gynecol Endocrinol. 2011; 27(7: 491-5.
https://doi.org/10.3109/09513590.2010.501874

55. Tan BK, Heutling D, Chen J, et al. Metformin decreases the adipokine vaspin in overweight women with polycystic ovary syndrome concomitant with improvement in insulin sensitivity and a decrease in insulin resistance. Diabetes. 2008; 57: 501-1507.
https://doi.org/10.2337/db08-0127

56. Bozkurt Doğan Ş, Öngöz DF, Ballı U, et al. Levels of vaspin and omentin-1 in gingival crevicular fluid as potential markers of inflammation in patients with chronic periodontitis and type 2 diabetes mellitus. J Oral Sci. 2016; 58(3): 379-389.
https://doi.org/10.2334/josnusd.15-0731

57. Balcazar MN, Aguilar de Plata C. Role of AKT/mTORC1 pathway in pancreatic B-cell proliferation. Colombia Médica. 2012; 43(3): 235-243.
https://doi.org/10.25100/cm.v43i3.783

58. Barbour LA, McCurdy CE, Hernandez TL, et al. Chronically increased S6K1 is associated with impaired IRS1 signaling in skeletal muscle of GDM women with impaired glucose tolerance postpartum. J Clin Endocrinol Metab. 2011; 96(5): 1431-1441.
https://doi.org/10.1210/jc.2010-2116

59. Goebeler M, Gillitzer R, Kilian K, et al. Multiple signaling path-ways regulates NF-kappaB-dependent transcription of the monocyte chemoattractant protein-1 gene in primary endothelial cell. Blood. 2001; 97(1): 46-55.
https://doi.org/10.1182/blood.V97.1.46

60. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000; 18: 621-663.
https://doi.org/10.1146/annurev.immunol.18.1.621

61. Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal. 2005; 7(7-8): 1040-1052.
https://doi.org/10.1089/ars.2005.7.1040

62. Liu S., Dong Y., Wang T., et al. Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EAhy926 cells. Diabetes Res Clin Pract. 2014; 103(3): 482-8.
https://doi.org/10.1016/j.diabres.2013.12.002

63. Liu S, Li X, Wu Y., et al. Effects of vaspin on pancreatic β cell secretion via PI3K/Akt and NF-κB signaling pathways. PLoS One. 2017; 12(12): e0189722.
https://doi.org/10.1371/journal.pone.0189722