Relationship modeling of biomarkers in assessing the activity of ulcerative colitis

Prof. A.E. Dorofeyev, S.V.Golub*, O.E.Ananin*, Yu.Z.Dyni.

National Medical Academy of Postgraduate Education named after P. L. Shupyk.

*Cherkasy State Technological University.

The article presents a study of the processes of information technology application of multi-level intelligent monitoring for non-invasive diagnosis of ulcerative colitis (UC) activity and assessment of the impact of biomarkers. Epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor beta (TGFβ) vascular endothelial growth factor (VEGF), and chemokine (CC motif) ligand 17 (CCL17) were studied in all patients. In addition, single nucleotide polymorphisms of the TGFβ and VEGF genes were identified. Inductive models constructed by the monitoring intellectual system based on the observation of the dependence of UC activity on the values of bioindicators of the cytokine cascade are adequate and can be used to provide information to the physician’s decision-making processes. The TGFβ-dependent signaling pathway of the immune response plays an important role in the pathogenesis of UC, and the serum TGFβ level can be considered as a new independent biological marker of disease activity.

Key Words: ulcerative colitis, mathematical modeling, biomarkers.

https://dx.doi.org/10.15407/internalmed2019.01.129

Download.PDF

1. Holub SV. Bahatorivneve modeliuvannia v tekhnolohiiakh monitorynhu otochuiuchoho seredovyshcha. Cherkasy: Vyd. vid. ChNU imeni Bohdana Khmelnytskoho; 2007. 220 р. Ukrainian.
2. Ivahnenko AG. Induktivnyj metod samoorganizacii modelej slozhnyh sistem. Kyiv. Naukova dumka; 1981. 296 р. Russian.
3. Akhurst RJ. The paradoxical TGF-β vasculopathies. Nature Genet. 2012;44:838-839. https://doi.org/10.1038/ng.2366.
https://doi.org/10.1038/ng.2366
4. Burisch J, Munkholm P. The epidemiology of inflammatory bowel disease. Scand J Gastroenterol. 2015;50(8):942-51. https://doi.org/10.3109/00365521.2015.1014407
https://doi.org/10.3109/00365521.2015.1014407
5. Coombes JL, Robinson NJ, Maloy KJ, Uhlig HH, Powrie F. Regulatory T-cells and intestinal homeostasis. Immunol Rev. 2005;204:184-94. https://doi.org/10.1111/j.0105-2896.2005.00250.x.
https://doi.org/10.1111/j.0105-2896.2005.00250.x
6. Durante C, Agostini F, Abbruzzese L, Toffola RT, Zanolin S, Suine C, and Mazzucato M. Growth factor release from platelet concentrates: analytic quantification and characterization for clinical applications. Vox Sang. 2013;105:129-136. https://doi.org/10.1111/vox.12039.
https://doi.org/10.1111/vox.12039
7. Elias KM, Laurence A, Davidson TS, Stephens G, Kanno Y, Shevach EM, O’Shea JJ. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood. 2008;111:1013-20. https://doi.org/10.1182/blood-2007-06-096438.
https://doi.org/10.1182/blood-2007-06-096438
8. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. The polarization of immune cells in the tumour environment by TGFβ. Nature Rev. Immunol. 2010;10:554-567. https://doi.org/10.1038/nri2808.
https://doi.org/10.1038/nri2808
9. Grivennikov SI, Greten FR, Karin M. Immunity inflammation and cancer. Cell. 2010;140(6):883-899. https://doi.org/10.1016/j.cell.2010.01.025.
https://doi.org/10.1016/j.cell.2010.01.025
10. Hawinkels LJ, Ten Dijke P. Exploring anti-TGF-β therapies in cancer and fibrosis. Growth Factors. 2011;29:140-152. https://doi.org/10.3109/08977194.2011.595411
https://doi.org/10.3109/08977194.2011.595411
11. Harbord М, Eliakim R, Bettenworth D, et al. Third European Evidence-Based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. J Crohns Colitis. 2017;38:12-78. https://doi.org/10.1093/ecco-jcc/jjx105.
https://doi.org/10.1093/ecco-jcc/jjx105
12. Johnson KE, Wilgus TA. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv. Wound Care. 2014;3:647-661. https://doi.org/10.1089/wound.2013.0517.
https://doi.org/10.1089/wound.2013.0517
13. Maynard CL, Weaver CT. Intestinal effector T-cells in health and disease. Immunity. 2009;31:389-400. https://doi.org/10.1016/j.immuni.2009.08.012.
https://doi.org/10.1016/j.immuni.2009.08.012
14. Geoffrey CN, Cynthia HS, Cynthia M, Vivian H, Leung Y, Jones J, Leontiadis G, Frances T, Mahadevan U, van der Woude CJ, Bitton A, Bressler B, Fowler S, Marshall JK, Palatnick C, Pupco A, Ray J, Targownik L, van der Woude J, Paterson W. The Toronto consensus statements for the management of inflammatory bowel disease in pregnancy. Gastroenterology. 2016;150:734-57. https://doi.org/10.1053/j.gastro.2015.12.003.
https://doi.org/10.1053/j.gastro.2015.12.003
15. Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nature Reviews Immunology. 2011;11(1):9-20. https://doi.org/10.1038/nri2891.
https://doi.org/10.1038/nri2891
16. Schmierer B, Hill CS. TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nature Rev.Mol. Cell Biol. 2007;8:970-982. https://doi.org/10.1038/nrm2297.
https://doi.org/10.1038/nrm2297
17. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology. 2018;18(5):309-324. https://doi.org/10.1038/nri.2017.142.
https://doi.org/10.1038/nri.2017.142