Correction of L-carnitine insufficiency in non-alcoholic steatohepatitis.

Prof. T.D. Zvyagintseva, PHD S.V. Glushchenko.

Kharkiv Medical Academy of Postgraduate Education, Department of Gastroenterology.

Objective: Improvement of the diagnosis of non-alcoholic steatohepatitis (NASH) and the development of optimally effective methods for correcting the revealed violations.

Materials and Methods: examined 65 patients with verified NASH. The age of the patients ranged from 23 to 67 years. Among them were 36 (55.4%) women and 29 (44.6%) men. The control group consisted of 20 healthy individuals. The effectiveness of complex therapy with the inclusion of the drug «Hepadif» was studied.

Results: The presence of carnitine insufficiency, hyperhomocysteinemia, increase in the level of proinflammatory cytokines in all patients with NASH. After a month of treatment with complex therapy, the level of L-carnitine increased from 14.5 (13.1, 15.7) μmol/l to 31.1 (28.8, 34.1) μmol/l (p<0.001), homocysteine decreased to subnormal figures – 11.8 (11.0, 12.8) μmol/l (p<0.001). When studying the cytokine profile in the group after treatment, a significant decrease in the level of proinflammatory cytokines was revealed.

Conclusion: The use of complex therapy with the inclusion of drugs «Hepadif» has a positive effect on the clinical course of the disease, contributes to the elimination of L-carnitine deficiency, hyperhomocysteinemia, a decrease in the level of pro-inflammatory cytokines.

Key Words: non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, L-carnitine, homocysteine, hyperhomocysteinemia.

https://dx.doi.org/10.15407/internalmed2018.01.016
Zvyagintseva TD, Glushchenko SV. [Correction of L-carnitine insufficiency in non-alcoholic steatohepatitis]. Shidnoevr. z. vnutr. simejnoi med. 2018;1:16-21. Russian.

Download.PDF

1. Kleiner DE, Brunt EM. Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis. 2012 Feb;32(1):3-13. doi: 10.1055/s-0032-1306421. Epub 2012 Mar 13. PMID: 22418883
https://doi.org/10.1055/s-0032-1306421
2. Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obes Rev. 2010 Jun;11(6):430-45. doi: 10.1111/j.1467-789X.2009.00657.x. Epub 2009 Oct 21. PMID: 19845871
https://doi.org/10.1111/j.1467-789X.2009.00657.x
3. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010 Jan;90(1):207-58. doi: 10.1152/physrev.00015.2009. PMID: 20086077
https://doi.org/10.1152/physrev.00015.2009
4. Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem. 2009 Aug 21;284(34):22840-52. doi: 10.1074/jbc.M109.032888. Epub 2009 Jun 24. PMID: 19553674 PMCID: PMC2755692
https://doi.org/10.1074/jbc.M109.032888
5. Sharma S, Black SM. Carnitine homeostasis, mitochondrial function, and cardiovascular disease. Drug Discov Today Dis Mech. 2009;6(1-4):e31-e39. PMID: 20648231 PMCID: PMC2905823 DOI: 10.1016/j.ddmec.2009.02.001
https://doi.org/10.1016/j.ddmec.2009.02.001
6. Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P, Console L, Palmieri F. The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology. Mol Aspects Med. 2011 Aug;32(4-6):223-33. doi: 10.1016/j.mam.2011.10.008. Epub 2011 Oct 15. PMID: 22020112
https://doi.org/10.1016/j.mam.2011.10.008
7. Lee K, Kerner J, Hoppel CL. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem. 2011 Jul 22;286(29):25655-62. doi: 10.1074/jbc.M111.228692. Epub 2011 May 26. PMID: 21622568 PMCID: PMC3138250
https://doi.org/10.1074/jbc.M111.228692
8. Li H, Ying H, Hu A, Hu Y, Li D. Therapeutic Effect of Gypenosides on Nonalcoholic Steatohepatitis via Regulating Hepatic Lipogenesis and Fatty Acid Oxidation. Biol Pharm Bull. 2017;40(5):650-657. doi: 10.1248/bpb.b16-00942. PMID: 28458350
https://doi.org/10.1248/bpb.b16-00942
9. Tonazzi A, Giangregorio N, Console L, De Palma A, Indiveri C. Nitric oxide inhibits the mitochondrial carnitine/acylcarnitine carrier through reversible S-nitrosylation of cysteine 136. Biochim Biophys Acta. 2017 Jul;1858(7):475-482. doi: 10.1016/j.bbabio.2017.04.002. Epub 2017 Apr 22. PMID: 28438511
https://doi.org/10.1016/j.bbabio.2017.04.002
10. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145-71. doi: 10.1146/annurev-pathol-121808-102132. PMID: 20078219
https://doi.org/10.1146/annurev-pathol-121808-102132
11. Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med. 2009 Apr;9(3):299-314. PMID: 19355912
https://doi.org/10.2174/156652409787847191
PMid:19355912
12. Furuno T, Kanno T, Arita K, Asami M, Utsumi T, Doi Y, Inoue M, Utsumi K. Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem Pharmacol. 2001 Oct 15;62(8):1037-46. PMID: 11597572
https://doi.org/10.1016/S0006-2952(01)00745-6
13. Oyanagi E, Yano H, Kato Y, Fujita H, Utsumi K, Sasaki J. L-Carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria. Cell Biochem Funct. 2008 Oct;26(7):778-86. doi: 10.1002/cbf.1506. PMID: 18683897
https://doi.org/10.1002/cbf.1506
14. Pillich RT, Scarsella G, Risuleo G. Reduction of apoptosis through the mitochondrial pathway by the administration of acetyl-L-carnitine to mouse fibroblasts in culture. Exp Cell Res. 2005 May 15;306(1):1-8. PMID: 15878327
https://doi.org/10.1016/j.yexcr.2005.01.019
PMid:15878327
15. Mel’nik AV, Voloshchouk NI, Pentyuk NO. Role of Hydrogen Sulfide and Sulfur-Containing Amino Acids in Regulation of Tone of Smooth Muscles of the Vascular Wall in Rats. Neurophysiol. 2010;2:126–31.
https://doi.org/10.1007/s11062-010-9137-5
16. Grattagliano I, de Bari O, Bernardo TC, Oliveira PJ, Wang DQ, Portincasa P. Role of mitochondria in nonalcoholic fatty liver disease–from origin to propagation. Clin Biochem. 2012 Jun;45(9):610-8. doi: 10.1016/j.clinbiochem.2012.03.024. Epub 2012 Mar 28. PMID: 22484459
https://doi.org/10.1016/j.clinbiochem.2012.03.024
17. Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O’Donnell VB, Kuhn H, Walther M. Molecular enzymology of lipoxygenases. Arch Biochem Biophys. 2010 Nov 15;503(2):161-74. doi: 10.1016/j.abb.2010.08.016. Epub 2010 Aug 27. PMID: 20801095
https://doi.org/10.1016/j.abb.2010.08.016
18. Maron AB, Loscalzo J. The Treatment of Hyperhomocysteinemia. Annu Rev Med. 2009; 60:39–54. doi: 10.1146/annurev.med.60.041807.123308
https://doi.org/10.1146/annurev.med.60.041807.123308
19. Naik A, Belič A, Zanger UM, Rozman D. Molecular Interactions between NAFLD and Xenobiotic Metabolism. Front Genet. 2013 Jan 22;4:2. doi: 10.3389/fgene.2013.00002. eCollection 2013. PMID: 23346097 PMCID: PMC3550596
https://doi.org/10.3389/fgene.2013.00002
20. Newton JL. Systemic symptoms in non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):214-9. doi: 10.1159/000282089. Epub 2010 May 7. PMID: 20460914
https://doi.org/10.1159/000282089
21. Non-Alcoholic Fatty Liver Disease: A Practical Guide. Geoffrey C. Farrell, Arthur J. McCullough, Christopher P. Day, editors. New York: Wiley-Blackwell; 2013. 324 p. ISBN: 978-0-470-67317-1
22. Powell EE, Jonsson JR, Clouston AD. Metabolic factors and non-alcoholic fatty liver disease as co-factors in other liver diseases. Dig Dis. 2010;28(1):186-91. doi: 10.1159/000282084. Epub 2010 May 7. PMID: 20460909
https://doi.org/10.1159/000282084