Prof. I.I. Topchii. GI «National Institute of Therapy named after L.T. Malaya Academy of Medical Sciences of Ukraine», Kharkiv.
In the article results of last researches about mechanisms of infringement of a mineral exchange are presented at a chronic disease of kidneys. It is shown, that the mineral and skeletal infringements accompanying kidney insufficiency are the important components of cardiovascular complications and high lethality in connection with osteoblastic transformation in the vascular wall caused by increase of level FGF23 and decrease of expression Klotho in circulating blood and a wall of vessels.
Key Words: hyperphosphatemia, fibroblast growth factor, Klotho, cardiovascular diseases.
Topchii II. [Changes of the morphogenetic proteins FGF23 and Klotho increase risk of cardiovascular events ]. Shidnoevr. z. vnutr. simejnoi med. 2016;2:28-33. Russian.
https://doi.org/10.15407/internalmed2016.02.027
1. Lisovyj VM, Andon’eva NM, Guc OA, Dubovyk MJa, Grushka MA, Lisova GV. [Application alpha d3 -teva in correction of infringements phosphorus-calcium metabolism at patients with chronic kidney diseases who are treated with peritoneal dialysis]. Ukrainian Journal of Nephrology and Dialysis. 2011;1(29):3—7. Ukrainian. | ||||
2. Martynjuk LP, Ruzhyc’ka OO. [Indices of calcium-phosphorus metabolism in patients with chronic kidney disease, who receive program hemodialysis]. Ukrainian Journal of Nephrology and Dialysis. 2011;3(31):11—16. Ukrainian. | ||||
3. Topchii II, Gal’chinskaia VIu, Iakimenko IuS, Semenovikh PS, Samokhina LM. Osobennosti mineral’nogo obmena u bol’nykh diabeticheskoi nefropatiei. Materialy naukovo-praktychnoi’ konferencii’ z mizhnarodnoju uchastju Shhorichni terapevtychni chytannja: profilaktyka neinfekcijnyh zahvorjuvan’ na perehresti terapevtychnyh nauk, prysvjachenoi’ pam`jati akademika L.T.Maloi’; 2016 Apr 21; Kharkiv, Ukraine. Kharkiv; 2016; p. 325. Russian. | ||||
4. Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, Erben RG. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014 Feb 3;33(3):229-46. doi: 10.1002/embj.201284188. PubMed PMID: 24434184; PubMed Central PMCID: PMC3983685. https://doi.org/10.1002/embj.201284188 |
||||
5. Arai-Nunota N, Mizobuchi M, Ogata H. Intravenous phosphate loading increases fibroblast growth factor 23 in uremic rats. PLoS One. 2014;9:L91096. PMID: 24625659. https://doi.org/10.1371/journal.pone.0091096 |
||||
6. Arnlov J, Carlsson AC, Sundstrom J. Higher fibroblast growth factor-23 increases the risk of all-cause and cardiovascular mortality in the community. Kidney Int. 2013 Jan;83(1):160-6. doi: 10.1038/ki.2012.327. https://doi.org/10.1038/ki.2012.327 |
||||
7. Chang JR, Guo J, Wang Y. Intermedin 1-53 attenuates vascular calcification in rats with chronic kidney disease by upregulation of α-Klotho. Kidney Int. 2016 Mar;89(3):586-600. doi: 10.1016/j.kint.2015.12.029. https://doi.org/10.1016/j.kint.2015.12.029 |
||||
8. Christov M, Waikar SS, Pereira RC. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int. 2013 Oct;84(4):776-85. doi: 10.1038/ki.2013.150. https://doi.org/10.1038/ki.2013.150 |
||||
9. Christov M, Juppner H. Insights from genetic disorders of phosphate homeostasis. Semin Nephrol. 2013 Mar;33(2):143-57. doi: 10.1016/j.semnephrol.2012.12.015. https://doi.org/10.1016/j.semnephrol.2012.12.015 |
||||
10. Dixit N, Simon SI. Chemokines, selectins and intracellular calcium flux: temporal and spatial cues for leukocyte arrest. Front Immunol. 2012 Jul 10;3:188. doi: 10.3389/fimmu.2012.00188. https://doi.org/10.3389/fimmu.2012.00188 |
||||
11. Donate-Correa J, Mora-Fernández C, Martínez-Sanz R. Expression of FGF23/KLOTHO system in human vascular tissue. Int J Cardiol. 2013 Apr 30;165(1):179-83. doi: 10.1016/j.ijcard.2011.08.850. https://doi.org/10.1016/j.ijcard.2011.08.850 |
||||
12. Faul C, Amaral AP, Oskouei B. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011 Nov;121(11):4393-408. doi: 10.1172/JCI46122. https://doi.org/10.1172/JCI46122 |
||||
13. Go AS, Chertow GM, Fan D. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004 Sep 23;351(13):1296-305. DOI: 10.1056/NEJMoa041031 https://doi.org/10.1056/NEJMoa041031 |
||||
14. Gravesen E, Mace ML, Hofman-Bang J, Olgaard K, Lewin E. Circulating FGF23 levels in response to acute changes in plasma Ca(2+). Calcif Tissue Int. 2014 Jul;95(1):46-53. doi: 10.1007/s00223-014-9861-8. https://doi.org/10.1007/s00223-014-9861-8 |
||||
15. Gupta J, Mitra N, Kanetsky PA. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol. 2012 Dec;7(12):1938-46. doi: 10.2215/CJN.03500412. https://doi.org/10.2215/CJN.03500412 |
||||
16. Hill KM, Martin BR, Wastney ME. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease. Kidney Int. 2013 May;83(5):959-66. doi: 10.1038/ki.2012.403. https://doi.org/10.1038/ki.2012.403 |
||||
17. Hruska K, Mathew S, Lund R. Cardiovascular risk factors in chronic kidney disease: does phosphate qualify? Kidney Int Suppl. 2011 Apr; 79(S121): S9–S13. Published online 2011 Feb 23. doi: 10.1038/ki.2011.24. https://doi.org/10.1038/ki.2011.24 |
||||
18. Hu MC, Shi M, Zhang J. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011 Jan;22(1):124-36. doi: 10.1681/ASN.2009121311. https://doi.org/10.1681/ASN.2009121311 |
||||
19. Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. Author manuscript; available in PMC 2014 Jan 1. Published in final edited form as: Annu Rev Physiol. 2013; 75: 503–533. doi: 10.1146/annurev-physiol-030212-183727. https://doi.org/10.1146/annurev-physiol-030212-183727 |
||||
20. Isakova T, Xie H, Yang W. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011 Jun 15;305(23):2432-9. doi: 10.1001/jama.2011.826. https://doi.org/10.1001/jama.2011.826 |
||||
21. Isakova T, Barchi-Chung A, Enfield G. Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD. Clin J Am Soc Nephrol. 2013 Jun;8(6):1009-18. doi: 10.2215/CJN.09250912. https://doi.org/10.2215/CJN.09250912 |
||||
22. Isakova T, Wahl P, Vargas GS. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011 Jun;79(12):1370-8. doi: 10.1038/ki.2011.47. https://doi.org/10.1038/ki.2011.47 |
||||
23. Keith DS, Nichols GA, Gullion CM. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004 Mar 22;164(6):659-63. PubMed PMID: 15037495. https://doi.org/10.1001/archinte.164.6.659 |
||||
24. Kendrick J, Cheung AK, Kaufman JS. FGF-23 Associates with Death, Cardiovascular Events, and Initiation of Chronic Dialysis. J Am Soc Nephrol. 2011 Oct;22(10):1913-22. doi: 10.1681/ASN.2010121224. https://doi.org/10.1681/ASN.2010121224 |
||||
25. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, Sherrard DJ, Andress DL. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005 Feb;16(2):520-8. PubMed PMID: 15615819. https://doi.org/10.1681/ASN.2004070602 |
||||
26. Kurts C, Panzer U, Anders HJ, Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol. 2013 Oct;13(10):738-53. doi: 10.1038/nri3523. Review. PubMed PMID: 24037418. https://doi.org/10.1038/nri3523 |
||||
27. Lavi-Moshayoff V, Wasserman G, Meir T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010 Oct;299(4):F882-9. doi: 10.1152/ajprenal.00360.2010. https://doi.org/10.1152/ajprenal.00360.2010 |
||||
28. Leaf DE, Wolf M, Waikar SS. FGF-23 levels in patients with AKI and risk of adverse outcomes. Clin J Am Soc Nephrol. 2012 Aug;7(8):1217-23. doi: 10.2215/CJN.00550112. https://doi.org/10.2215/CJN.00550112 |
||||
29. Lim K, Lu TS, Molostvov G. Vascular klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012 May 8;125(18):2243-55. doi: 10.1161/CIRCULATIONAHA.111.053405. https://doi.org/10.1161/CIRCULATIONAHA.111.053405 |
||||
30. Mahmoodi BK, Matsushita K, Woodward M. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet. 2012 Nov 10;380(9854):1649-61. doi: 10.1016/S0140-6736(12)61272-0. https://doi.org/10.1016/S0140-6736(12)61272-0 |
||||
31. Martin A, David V, Quarles LD. Regulation and Function of the FGF23/Klotho Endocrine Pathways. Physiol Rev. 2012 Jan;92(1):131-55. doi: 10.1152/physrev.00002.2011. https://doi.org/10.1152/physrev.00002.2011 |
||||
32. Maekawa Y, Ohishi M, Ikushima M. Klotho protein diminishes endothelial apoptosis and senescence via a mitogen-activated kinase pathway. Geriatr Gerontol Int. 2011 Oct;11(4):510-6. doi: 10.1111/j.1447-0594.2011.00699.x. https://doi.org/10.1111/j.1447-0594.2011.00699.x |
||||
33. Martin A, Liu S., David V. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 2011 Aug;25(8):2551-62. doi: 10.1096/fj.10-177816. https://doi.org/10.1096/fj.10-177816 |
||||
34. Mencke R, Harms G, Mirković K. NIGRAM Consortium. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc Res. 2015 Nov 1;108(2):220-31. doi: 10.1093/cvr/cvv187. https://doi.org/10.1093/cvr/cvv187 |
||||
35. Moe S, Drueke T, Cunningham J. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006 Jun;69(11):1945-53. DOI: 10.1038/sj.ki.5000414 https://doi.org/10.1038/sj.ki.5000414 |
||||
36. Moe SM, Radcliffe JS, White KE. The pathophysiology of early-stage chronic kidney disease–mineral bone disorder (CKD-MBD) and response to phosphate binders in the rat. J Bone Miner Res. 2011 Nov;26(11):2672-81. doi: 10.1002/jbmr.485. https://doi.org/10.1002/jbmr.485 |
||||
37. Munoz MJ, Isakova T, Ricardo AC. Fibroblast growth factor 23 and inflammation in CKD. Clin J Am Soc Nephrol. 2012 Jul;7(7):1155-62. doi: 10.2215/CJN.13281211. https://doi.org/10.2215/CJN.13281211 |
||||
38. Nasrallah MM, El-Shehaby AR, Salem MM. Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol Dial Transplant. 2010 Aug;25(8):2679-85. doi: 10.1093/ndt/gfq089. https://doi.org/10.1093/ndt/gfq089 |
||||
39. Nordholm A, Mace ML, Gravesen E, Olgaard K, Lewin E. A Potential kidney — bone axis involved in the rapid minute-to-minute regulation of plasma Ca(2+). BMC Nephrol. 2015 Mar 15;16:29. doi: 10.1186/s12882-015-0019-3. https://doi.org/10.1186/s12882-015-0019-3 |
||||
40. Parker BD, Schurgers LJ, Brandenburg VM. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med. 2010 May 18;152(10):640-8. doi: 10.7326/0003-4819-152-10-201005180-00004. https://doi.org/10.7326/0003-4819-152-10-201005180-00004 |
||||
41. Quinn SJ, Thomsen AR, Pang JL. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab. 2013 Feb 1; 304(3):310–20. doi: 10.1152/ajpendo.00460.2012 https://doi.org/10.1152/ajpendo.00460.2012 |
||||
42. Rhee Y, Bivi N, Farrow E. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone. 2011 Oct;49(4):636-43. doi: 10.1016/j.bone.2011.06.025. https://doi.org/10.1016/j.bone.2011.06.025 |
||||
43. Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR. Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol. 2012 Jul;23(7):1190-7. doi: 10.1681/ASN.2011101006. https://doi.org/10.1681/ASN.2011101006 |
||||
44. Rossaint J, Oehmichen J, Van Aken H. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016 Mar 1;126(3):962-74. PMCID: PMC4767336. DOI: 10.1172/JCI83470 https://doi.org/10.1172/JCI83470 |
||||
45. Sabbagh Y, Gaciolli FG, O’Brien S. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012 Aug;27(8):1757-72. doi: 10.1002/jbmr.1630. https://doi.org/10.1002/jbmr.1630 |
||||
46. Saini RK, Kaneko I, Jurutka PW. 1,25-dihydroxyvitamin D(3) regulation of fibroblast growth factor-23 expression in bone cells: evidence for primary and secondary mechanisms modulated by leptin and interleukin-6. Calcif Tissue Int. 2013 Apr;92(4):339-53. doi: 10.1007/s00223-012-9683-5. https://doi.org/10.1007/s00223-012-9683-5 |
||||
47. Scanni R, Rotz M, Jehle S, Hulter HN, Krapf R. The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol. 2014 Dec;25(12):2730-9. doi: 10.1681/ASN.2013101076. https://doi.org/10.1681/ASN.2013101076 |
||||
48. Scialla JJ, Lau WL, Reilly MP. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013 Jun;83(6):1159-68. doi: 10.1038/ki.2013.3. https://doi.org/10.1038/ki.2013.3 |
||||
49. Shalhoub V, Ward SC, Sun B. Fibroblast growth factor 23 (FGF23) and alpha-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcif Tissue Int. 2011 Aug;89(2):140-50. doi: 10.1007/s00223-011-9501-5. https://doi.org/10.1007/s00223-011-9501-5 |
||||
50. Shanahan CM, Crouthamel MH, Kapustin A. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res. 2011 Sep 2;109(6):697-711. doi: 10.1161/CIRCRESAHA.110.234914. https://doi.org/10.1161/CIRCRESAHA.110.234914 |
||||
51. Shimamura Y, Hamada K, Inoue K. Serum levels of soluble secreted α-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol. 2012 Oct;16(5):722-9. doi: 10.1007/s10157-012-0621-7. https://doi.org/10.1007/s10157-012-0621-7 |
||||
52. Six I, Okazaki H, Gross P. Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One. 2014 Apr 2;9(4):e93423. doi: 10.1371/journal.pone.0093423. https://doi.org/10.1371/journal.pone.0093423 |
||||
53. Spichtig D, Zhang H, Mohebbi N. Renal expression of FGF23 and peripheral resistance to elevated FGF23 in rodent models of polycystic kidney disease. Kidney Int. 2014 Jun;85(6):1340-50. doi: 10.1038/ki.2013.526. https://doi.org/10.1038/ki.2013.526 |
||||
54. Stubbs JR, He N, Idiculla A. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J Bone Miner Res. 2012 Jan;27(1):38-46. doi: 10.1002/jbmr.516. https://doi.org/10.1002/jbmr.516 |
||||
55. Tagliabracci VS, Engel JL, Wiley SE. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5520-5. doi: 10.1073/pnas.1402218111. https://doi.org/10.1073/pnas.1402218111 |
||||
56. Wohrle S, Bonny O, Beluch N. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res. 2011 Oct;26(10):2486-97. doi: 10.1002/jbmr.478. https://doi.org/10.1002/jbmr.478 |
||||
57. Wu AL, Feng B, Chen MZ. Antibody-mediated activation of FGFR1 induces FGF23 production and hypophosphatemia. PLoS One. 2013;8(2):e57322. doi: 10.1371/journal.pone.0057322. https://doi.org/10.1371/journal.pone.0057322 |
||||
58. Wu M, Rementer C, Giachelli CM. Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int. 2013 Oct;93(4):365-73. doi: 10.1007/s00223-013-9712-z. https://doi.org/10.1007/s00223-013-9712-z |
||||
59. Yifu Fang, Charles Ginsberg, Toshifumi Sugatani. Early chronic kidney disease–mineral bone disorder stimulates vascular calcification. Kidney Int. 2014 Jan; 85(1): 142–150. doi: 10.1038/ki.2013.271 https://doi.org/10.1038/ki.2013.271 |
||||
60. Yilmaz MI, Sonmez A, Saglam M. FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int. 2010 Oct;78(7):679-85. doi: 10.1038/ki.2010.194. https://doi.org/10.1038/ki.2010.194 |
||||
61. Yoon HE, Ghee JY, Piao S. Angiotensin II blockade upregulates the expression of Klotho the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011 Mar;26(3):800-13. doi: 10.1093/ndt/gfq537. https://doi.org/10.1093/ndt/gfq537 |
||||
62. Xie J, Yoon J, An SW. Soluble Klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J Am Soc Nephrol. 2015 May;26(5):1150-60. doi: 10.1681/ASN.2014040325. https://doi.org/10.1681/ASN.2014040325 |
||||
63. Zanchi C, Locatelli M, Benigni A. Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ACE inhibitor. PLoS One. 2013 Aug 14;8(8):70775. doi: 10.1371/journal.pone.0070775. https://doi.org/10.1371/journal.pone.0070775 |
||||
64. Zhang S, Gillihan R, He N. Dietary phosphate restriction suppresses phosphaturia but does not prevent FGF23 elevation in a mouse model of chronic kidney disease. Kidney Int. 2013 Oct;84(4):713-21. doi: 10.1038/ki.2013.194. https://doi.org/10.1038/ki.2013.194 |
||||
65. Zhu D, Mackenzie NCW, Millán JL. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One. 2011;6(5):19595. doi: 10.1371/journal.pone.0019595. https://doi.org/10.1371/journal.pone.0019595 |