Prof. Zhuravlyova L.V., PHD Sokolnikova N.V., PHD Rogachova T.A.
Kharkiv National Medical University
Atherosclerotic cardiovascular diseases are the most common cause of death in the developed countries of the world. Patients with diabetes mellitus 2 type are 2-4 times more likely to die from these diseases compared to patients without diabetes. This review discusses the pathophysiology of lipid disorders, which are the main cause of cardiovascular disease in patients with diabetes mellitus 2 type, and the current approaches to the medical therapy of these disorders. Obesity, metabolic syndrome, and diabetes mellitus 2 type are characterized by insulin resistance, which leads to excessive lipolysis of visceral adipose tissue. The consequence of this disorder is the excessive production of free fatty acids, which become the source for excessive synthesis of proatherogenic lipoproteins saturated with triglycerides. These lipid profile abnormalities are the main pathogenetic link between diabetes and increased risk of atherosclerosis. Chronically elevated levels of free fatty acids reduce insulin synthesis, glucose-stimulated insulin secretion, and β-cell sensitivity to glucose, resulting in a very high risk of developing diabetes mellitus 2 type. Numerous factors contribute to elevated plasma free fatty acid levels and subsequent impairment of metabolic health, such as unhealthy diet, obesity, low physical activity, obstructive sleep apnea, sleep deprivation, and smoking. Currently, lifestyle changes are the best tool for long-term normalization of the concentration of free fatty acids in the blood plasma. The results of modern research have proven that a healthy lifestyle and glycemic control, treatment with statins, ezetimibe, and hypoglycemic drugs improve the lipid profile, reduce insulin resistance and inflammation, which reduces the risk of cardiovascular diseases.
Key words: insulin resistance, type 2 diabetes, free fatty acids, inflammation
https://dx.doi.org/10.15407/internalmed2022.02.049
Для цитування:
- Журавльова, Л.В. Діабетична дисліпідемія: фокус на патогенез і лікування / Л.В. Журавльова, Н.В. Сокольнікова, Т.А. Рогачова // Східноєвропейський журнал внутрішньої та сімейної медицини. – 2022. – № 2. – С. 49-57. doi: 15407/internalmed2022.02.049
- Zhuravlyova LV, Sokolnikova NV, Rogachova TA. [Diabetic dyslipidemia: focus on pathogenesis and treatment]. Shidnoevr. z. vnutr. simejnoi med. 2022;2:49-57. Ukrainian. doi: 10.15407/internalmed2022.02.049
References
- Stefanovski D, Punjabi N, Boston R, Watanabe R. Insulin Action, Glucose Homeostasis and Free Fatty Acid Metabolism: Insights From a Novel Model. Frontiers in Endocrinology. 2021;12:. http://dx.doi.org/10.3389/fendo.2021.625701
- Chueire V, Muscelli E. Effect of free fatty acids on insulin secretion, insulin sensitivity and incretin effect – a narrative review. Archives of Endocrinology and Metabolism. 2020;:. http://dx.doi.org/10.20945/2359-3997000000313
- Xin Y, Wang Y, Chi J, Zhu X, Zhao H, Zhao S, Wang Y. Elevated free fatty acid level is associated with insulin-resistant state in nondiabetic Chinese people. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2019;Volume 12:139-147. http://dx.doi.org/10.2147/dmso.s186505
- Newsholme E, Dimitriadis G. Integration of biochemical and physiologic effects of insulin on glucose metabolism. Experimental and Clinical Endocrinology & Diabetes. 2001;109(Suppl 2):S122-S134. http://dx.doi.org/10.1055/s-2001-18575
- Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids in Health and Disease. 2015;14(1):. http://dx.doi.org/10.1186/s12944-015-0123-1
- Welsh P, Grassia G, Botha S, Sattar N, Maffia P. Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect?. British Journal of Pharmacology. 2017;174(22):3898-3913. http://dx.doi.org/10.1111/bph.13818
- Moore K. Targeting inflammation in CVD: advances and challenges. Nature Reviews Cardiology. 2018;16(2):74-75. http://dx.doi.org/10.1038/s41569-018-0144-3
- Ridker P. Clinician’s Guide to Reducing Inflammation to Reduce Atherothrombotic Risk. Journal of the American College of Cardiology. 2018;72(25):3320-3331. http://dx.doi.org/10.1016/j.jacc.2018.06.082
- Sharif S, Van der Graaf Y, Cramer M, Kapelle L, de Borst G, Visseren F, Westerink J, van Petersen R, Dinther B, Algra A, van der Graaf Y, Grobbee D, Rutten G, Visseren F, de Borst G, Kappelle L, Leiner T, Nathoe H. Low-grade inflammation as a risk factor for cardiovascular events and all-cause mortality in patients with type 2 diabetes. Cardiovascular Diabetology. 2021;20(1):. http://dx.doi.org/10.1186/s12933-021-01409-0
- Aday A, Ridker P. Targeting Residual Inflammatory Risk: A Shifting Paradigm for Atherosclerotic Disease. Frontiers in Cardiovascular Medicine. 2019;6:. http://dx.doi.org/10.3389/fcvm.2019.00016
- Ridker P. From C-Reactive Protein to Interleukin-6 to Interleukin-1. Circulation Research. 2016;118(1):145-156. http://dx.doi.org/10.1161/circresaha.115.306656
- Lorey M, Öörni K, Kovanen P. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Frontiers in Cardiovascular Medicine. 2022;9:. http://dx.doi.org/10.3389/fcvm.2022.841545
- Doran A. Inflammation Resolution: Implications for Atherosclerosis. Circulation Research. 2022;130(1):130-148. http://dx.doi.org/10.1161/circresaha.121.319822
- Hirano T. Pathophysiology of Diabetic Dyslipidemia. Journal of Atherosclerosis and Thrombosis. 2018;25(9):771-782. http://dx.doi.org/10.5551/jat.rv17023
- Ye X, Kong W, Zafar M, Chen L. Serum triglycerides as a risk factor for cardiovascular diseases in type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Cardiovascular Diabetology. 2019;18(1):. http://dx.doi.org/10.1186/s12933-019-0851-z
- American Diabetes Association. Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clin Diabetes. 2022; 40 (1): 10–38.
- Stahel P, Xiao C, Nahmias A, Lewis G. Role of the Gut in Diabetic Dyslipidemia. Frontiers in Endocrinology. 2020;11:. http://dx.doi.org/10.3389/fendo.2020.00116
- Arpón A, Santos J, Milagro F, Cataldo L, Bravo C, Riezu-Boj J, Martínez J. Insulin Sensitivity Is Associated with Lipoprotein Lipase (LPL) and Catenin Delta 2 (CTNND2) DNA Methylation in Peripheral White Blood Cells in Non-Diabetic Young Women. International Journal of Molecular Sciences. 2019;20(12):2928. http://dx.doi.org/10.3390/ijms20122928
- Malhotra P, Boddy C, Dudeja A, Saksena S, Dudeja P, Gill R, Alrefai W. D-Glucose Increases Intestinal Niemann-Pick C1 Like 1 (NPC1L1) Gene Expression via Transcriptional Regulation. Gastroenterology. 2011;140(5):S-658-S-659. http://dx.doi.org/10.1016/s0016-5085(11)62731-5
- Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World Journal of Diabetes. 2015;6(3):456. http://dx.doi.org/10.4239/wjd.v6.i3.456
- Park K, Steffes M, Lee D, Himes J, Jacobs D. Association of inflammation with worsening HOMA-insulin resistance. Diabetologia. 2009;52(11):2337-2344. http://dx.doi.org/10.1007/s00125-009-1486-5
- Lee S, Kim H, Park Y, Kwon H, Yoon K, Han K, Kim M. HDL-Cholesterol, Its Variability, and the Risk of Diabetes: A Nationwide Population-Based Study. The Journal of Clinical Endocrinology & Metabolism. 2019;104(11):5633-5641. http://dx.doi.org/10.1210/jc.2019-01080
- Femlak M, Gluba-Brzózka A, Ciałkowska-Rysz A, Rysz J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids in Health and Disease. 2017;16(1):. http://dx.doi.org/10.1186/s12944-017-0594-3
- Xepapadaki E, Nikdima I, Sagiadinou E, Zvintzou E, Kypreos K. HDL and type 2 diabetes: the chicken or the egg?. Diabetologia. 2021;64(9):1917-1926. http://dx.doi.org/10.1007/s00125-021-05509-0
- Cochran B, Ong K, Manandhar B, Rye K. High Density Lipoproteins and Diabetes. Cells. 2021;10(4):850. http://dx.doi.org/10.3390/cells10040850
- Russo G, Piscitelli P, Giandalia A, Viazzi F, Pontremoli R, Fioretto P, De Cosmo S. Atherogenic dyslipidemia and diabetic nephropathy. Journal of Nephrology. 2020;33(5):1001-1008. http://dx.doi.org/10.1007/s40620-020-00739-8
- Arnold N, Lechner K, Waldeyer C, Shapiro M, Koenig W. Inflammation and Cardiovascular Disease: The Future. European Cardiology Review. 2021;16:. http://dx.doi.org/10.15420/ecr.2020.50
- Suiter C, Singha S, Khalili R, Shariat-Madar Z. Free Fatty Acids: Circulating Contributors of Metabolic Syndrome. Cardiovascular & Hematological Agents in Medicinal Chemistry. 2018;16(1):20-34. http://dx.doi.org/10.2174/1871525716666180528100002
- Boden G. Effects of Free Fatty Acids (FFA) on Glucose Metabolism: Significance for Insulin Resistance and Type 2 Diabetes. Experimental and Clinical Endocrinology & Diabetes. 2003;111(03):121-124. http://dx.doi.org/10.1055/s-2003-39781
- Samuel V, Shulman G. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metabolism. 2018;27(1):22-41. http://dx.doi.org/10.1016/j.cmet.2017.08.002
- Hagman E, Besor O, Hershkop K, Santoro N, Pierpont B, Mata M, Caprio S, Weiss R. Relation of the degree of obesity in childhood to adipose tissue insulin resistance. Acta Diabetologica. 2019;56(2):219-226. http://dx.doi.org/10.1007/s00592-018-01285-3
- Rider O, Holloway C, Emmanuel Y, Bloch E, Clarke K, Neubauer S. Increasing Plasma Free Fatty Acids in Healthy Subjects Induces Aortic Distensibility Changes Seen in Obesity. Circulation: Cardiovascular Imaging. 2012;5(3):367-375. http://dx.doi.org/10.1161/circimaging.111.971804
- Høgild M, Gudiksen A, Pilegaard H, Stødkilde‐Jørgensen H, Pedersen S, Møller N, Jørgensen J, Jessen N. Redundancy in regulation of lipid accumulation in skeletal muscle during prolonged fasting in obese men. Physiological Reports. 2019;7(21):. http://dx.doi.org/10.14814/phy2.14285
- Smart N, King N, McFarlane J, Graham P, Dieberg G. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis. British Journal of Sports Medicine. 2016;52(13):834-843. http://dx.doi.org/10.1136/bjsports-2016-096197
- Borel A. Sleep Apnea and Sleep Habits: Relationships with Metabolic Syndrome. Nutrients. 2019;11(11):2628. http://dx.doi.org/10.3390/nu11112628
- Zhu B, Shi C, Park C, Zhao X, Reutrakul S. Effects of sleep restriction on metabolism-related parameters in healthy adults: A comprehensive review and meta-analysis of randomized controlled trials. Sleep Medicine Reviews. 2019;45:18-30. http://dx.doi.org/10.1016/j.smrv.2019.02.002
- Haj Mouhamed D, Ezzaher A, Hellara I, Neffati F, Douki W, Gaha L, Najjar M. 1980 – Effect of cigarette smoking on insulin resistance risk. European Psychiatry. 2013;28:1. http://dx.doi.org/10.1016/s0924-9338(13)76917-7
- Rincón, Krook, Galuska, Wallberg-Henriksson, Zierath. Altered skeletal muscle glucose transport and blood lipid levels in habitual cigarette smokers. Clinical Physiology. 1999;19(2):135-142. http://dx.doi.org/10.1046/j.1365-2281.1999.00161.x
- Rao M, Neylan T, Grunfeld C, Mulligan K, Schambelan M, Schwarz J. Subchronic Sleep Restriction Causes Tissue-Specific Insulin Resistance. The Journal of Clinical Endocrinology & Metabolism. 2015;100(4):1664-1671. http://dx.doi.org/10.1210/jc.2014-3911
- Egan B, Greene E, Goodfriend T. Nonesterified fatty acids in blood pressure control and cardiovascular complications. Current Hypertension Reports. 2001;3(2):107-116. http://dx.doi.org/10.1007/s11906-001-0021-y
- Henderson G. Plasma Free Fatty Acid Concentration as a Modifiable Risk Factor for Metabolic Disease. Nutrients. 2021;13(8):2590. http://dx.doi.org/10.3390/nu13082590
- MacDonald P, El-kholy W, Riedel M, Salapatek A, Light P, Wheeler M. The Multiple Actions of GLP-1 on the Process of Glucose-Stimulated Insulin Secretion. Diabetes. 2002;51(suppl_3):S434-S442. http://dx.doi.org/10.2337/diabetes.51.2007.s434
- Taskinen M, Björnson E, Matikainen N, Söderlund S, Pietiläinen K, Ainola M, Hakkarainen A, Lundbom N, Fuchs J, Thorsell A, Andersson L, Adiels M, Packard C, Borén J. Effects of liraglutide on the metabolism of triglyceride‐rich lipoproteins in type 2 diabetes. Diabetes, Obesity and Metabolism. 2021;23(5):1191-1201. http://dx.doi.org/10.1111/dom.14328
- Colhoun H, Betteridge D, Durrington P, Hitman G, Neil H, Livingstone S. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364:685–696. doi: 10.1016/S0140-6736(04)16895-5.
- Kandelouei T, Abbasifard M, Imani D, Aslani S, Razi B, Fasihi M, Shafiekhani S, Mohammadi K, Jamialahmadi T, Reiner Ž, Sahebkar A. Effect of Statins on Serum level of hs-CRP and CRP in Patients with Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mediators of Inflammation. 2022;2022:1-20. http://dx.doi.org/10.1155/2022/8732360
- Shakour N, Ruscica M, Hadizadeh F, Cirtori C, Banach M, Jamialahmadi T, Sahebkar A. Statins and C-reactive protein: in silico evidence on direct interaction. Archives of Medical Science. 2020;16(6):1432-1439. http://dx.doi.org/10.5114/aoms.2020.100304
- Momtazi-Borojeni A, Sabouri-Rad S, Gotto A, Pirro M, Banach M, Awan Z, Barreto G, Sahebkar A. PCSK9 and inflammation: a review of experimental and clinical evidence. European Heart Journal – Cardiovascular Pharmacotherapy. 2019;5(4):237-245. http://dx.doi.org/10.1093/ehjcvp/pvz022
- Everett B, MacFadyen J, Thuren T, Libby P, Glynn R, Ridker P. Inhibition of Interleukin-1β and Reduction in Atherothrombotic Cardiovascular Events in the CANTOS Trial. Journal of the American College of Cardiology. 2020;76(14):1660-1670. http://dx.doi.org/10.1016/j.jacc.2020.08.011
- Pradhan A, Paynter N, Everett B, Glynn R, Amarenco P, Elam M, Ginsberg H, Hiatt W, Ishibashi S, Koenig W, Nordestgaard B, Fruchart J, Libby P, Ridker P. Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study. American Heart Journal. 2018;206:80-93. http://dx.doi.org/10.1016/j.ahj.2018.09.011
- Szymczak-Pajor I, Wenclewska S, Śliwińska A. Metabolic Action of Metformin. Pharmaceuticals. 2022;15(7):810. http://dx.doi.org/10.3390/ph15070810
- Sato D, Morino K, Ogaku S, Tsuji A, Nishimura K, Sekine O, Ugi S, Maegawa H. Efficacy of metformin on postprandial plasma triglyceride concentration by administration timing in patients with type 2 diabetes mellitus: A randomized cross‐over pilot study. Journal of Diabetes Investigation. 2019;10(5):1284-1290. http://dx.doi.org/10.1111/jdi.13016
- Patel V, Joharapurkar A, Shah G, Jain M. Effect of GLP-1 Based Therapies on Diabetic Dyslipidemia. Current Diabetes Reviews. 2014;10(4):238-250. http://dx.doi.org/10.2174/1573399810666140707092506
- Onoviran O, Li D, Toombs Smith S, Raji M. Effects of glucagon-like peptide 1 receptor agonists on comorbidities in older patients with diabetes mellitus. Therapeutic Advances in Chronic Disease. 2019;10:204062231986269. http://dx.doi.org/10.1177/2040622319862691
- Basu D, Huggins L, Scerbo D, Obunike J, Mullick A, Rothenberg P, Di Prospero N, Eckel R, Goldberg I. Mechanism of Increased LDL (Low-Density Lipoprotein) and Decreased Triglycerides With SGLT2 (Sodium-Glucose Cotransporter 2) Inhibition. Arteriosclerosis, Thrombosis, and Vascular Biology. 2018;38(9):2207-2216. http://dx.doi.org/10.1161/atvbaha.118.311339
- Sánchez-García A, Simental-Mendía M, Millán-Alanís J, Simental-Mendía L. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: A systematic review and meta-analysis of 48 randomized controlled trials. Pharmacological Research. 2020;160:105068. http://dx.doi.org/10.1016/j.phrs.2020.105068
- Skelley J, Carter B, Roberts M. Clinical potential of canagliflozin in cardiovascular risk reduction in patients with type 2 diabetes. Vascular Health and Risk Management. 2018;Volume 14:419-428. http://dx.doi.org/10.2147/vhrm.s168472
- Sugizaki T, Watanabe M, Horai Y, Kaneko-Iwasaki N, Arita E, Miyazaki T, Morimoto K, Honda A, Irie J, Itoh H. The Niemann-Pick C1 Like 1 (NPC1L1) Inhibitor Ezetimibe Improves Metabolic Disease Via Decreased Liver X Receptor (LXR) Activity in Liver of Obese Male Mice. Endocrinology. 2014;155(8):2810-2819. http://dx.doi.org/10.1210/en.2013-2143
- Mangat R, Warnakula S, Wang Y, Russell J, Uwiera R, Vine D, Proctor S. Model of intestinal chylomicron over-production and Ezetimibe treatment: Impact on the retention of cholesterol in arterial vessels. Atherosclerosis Supplements. 2010;11(1):17-24. http://dx.doi.org/10.1016/j.atherosclerosissup.2010.04.043
- Tie C, Gao K, Zhang N, Zhang S, Shen J, Xie X, Wang J. Ezetimibe Attenuates Atherosclerosis Associated with Lipid Reduction and Inflammation Inhibition. PLOS ONE. 2015;10(11):e0142430. http://dx.doi.org/10.1371/journal.pone.0142430