Molecular mechanisms of insulin resistance in normal pregnancy and gestational diabetes

Prof. L.V. Zhuravlyova, PhD N.V. Sokolnikova, PhD T.A. Rogachova

Kharkiv National Medical University

The purpose of this review article is to analyze current information on the molecular mechanisms of gestational diabetes and the prospects for their use in the further development of new effective treatments for this common pathology. Decreased ability of insulin to bind to its receptor, decreased IRS-1 expression and GLUT-4 translocation, and increased levels of p85α-PI-3 kinase subunits are involved in the development of insulin resistance during pregnancy. In gestational diabetes, there are not only more significant changes of the above mentioned indicators, but also increased levels of pro-inflammatory factors: TNF-α, IL-6, leptin and decreased insulin-sensitizing factors: adiponectin and PPAR-γ. Therapeutic measures aimed at normalizing the secretion of cytokines and adipokines reduce the risk of gestational diabetes mellitus and its complications and require further development

Key Words: gestational diabetes mellitus, insulin resistance, proinflammatory cytokines.

https://dx.doi.org/10.15407/internalmed2021.01.022

Download.PDF (ukr)

For citing:

1. Журавльова, Л.В., Сокольнікова, Н.В., Рогачова, Т.А. Молекулярні механізми інсулінорезистентності при нормальній вагітності та гестаційному діабеті // Східноєвропейський журнал внутрішньої та сімейної медицини. – 2021. – №1. – С. 22-30. doi: 10.15407/internalmed2021.01.022

2. Zhuravlyova LV, Sokolnikova NV, Rogachova TA. [Molecular mechanisms of insulin resistance in normal pregnancy and gestational diabetes]. Shidnoevr. z. vnutr. simejnoi med. 2021;1:22-30. Ukrainian. doi: 10.15407/internalmed2021.01.022

References:

1. American Diabetes Association Management of Diabetes in Pregnancy. Standards of Medical Care in Diabetes. Diabetes Care. 2020;43 (1):183-192.
https://doi.org/10.2337/dc20-S014

2. Sonagra A, Biradar S, K Dattatreya K, Murthy J. Normal pregnancy-a state of insulin resistance. Journal of clinical and diagnostic research. 2014;8 (11):1-3.
https://doi.org/10.7860/JCDR/2014/10068.5081

3. Petersen M, Shulman G. Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews. 2018;98(4):2133-2223. http://dx.doi.org/10.1152/physrev.00063.2017
https://doi.org/10.1152/physrev.00063.2017

4. Barbour L, McCurdy C, Hernandez T, Kirwan J, Catalano P, Friedman J. Cellular Mechanisms for Insulin Resistance in Normal Pregnancy and Gestational Diabetes. Diabetes Care. 2007;30(Supplement 2):S112-S119. http://dx.doi.org/10.2337/dc07-s202
https://doi.org/10.2337/dc07-s202

5. Angueira A, Ludvik A, Reddy T, Wicksteed B, Lowe W, Layden B. New Insights Into Gestational Glucose Metabolism: Lessons Learned From 21st Century Approaches. Diabetes. 2015;64(2):327-334. http://dx.doi.org/10.2337/db14-0877
https://doi.org/10.2337/db14-0877

6. Abhari F, Ghanbari Andarieh M, Farokhfar A, Ahmady S. Estimating Rate of Insulin Resistance in Patients with Preeclampsia Using HOMA-IR Index and Comparison with Nonpreeclampsia Pregnant Women. BioMed Research International. 2014;2014:1-6. http://dx.doi.org/10.1155/2014/140851
https://doi.org/10.1155/2014/140851

7. Zhang M, Zhou Y, Zhong J, Wang K, Ding Y, Li L. Current guidelines on the management of gestational diabetes mellitus: a content analysis and appraisal. BMC Pregnancy and Childbirth. 2019;19(1):. http://dx.doi.org/10.1186/s12884-019-2343-2
https://doi.org/10.1186/s12884-019-2343-2

8. Kirwan J, Hauguel-De Mouzon S, Lepercq J, Challier J, Huston-Presley L, Friedman J, Kalhan S, Catalano P. TNF- Is a Predictor of Insulin Resistance in Human Pregnancy. Diabetes. 2002;51(7):2207-2213. http://dx.doi.org/10.2337/diabetes.51.7.2207
https://doi.org/10.2337/diabetes.51.7.2207

9. Cunningham F, Lenevo K, Bloom S. Williams Obstetrics. 22nd ed. Maternal physiology; 2005. 107-131.

10. Xu J, Zhao Y, Chen Y, Yuan X, Wang J, Zhu H, Lu C. Maternal Circulating Concentrations of Tumor Necrosis Factor-Alpha, Leptin, and Adiponectin in Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. The Scientific World Journal. 2014;2014:1-12. http://dx.doi.org/10.1155/2014/926932
https://doi.org/10.1155/2014/926932

11. El-Bassyouni H, Abdel Raouf S, Farag M, Nawito W, Salman T, Gaber K. Dysregulation of tumor necrosis factor-α and interleukin-6 as predictors of gestational disorders. Middle East Journal of Medical Genetics. 2018;7(2):112. http://dx.doi.org/10.4103/mxe.mxe_18_18
https://doi.org/10.4103/MXE.MXE_18_18

12. Lepercq J, Cauzac M, Lahlou N, Timsit J, Girard J, Auwerx J, Hauguel-de Mouzon S. Overexpression of placental leptin in diabetic pregnancy: a critical role for insulin. Diabetes. 1998;47(5):847-850. http://dx.doi.org/10.2337/diabetes.47.5.847
https://doi.org/10.2337/diabetes.47.5.847

13. Cseh K, Baranyi É, Melczer Z, Csákány G, Speer G, Kovács M, Gerö G, Karádi I, Winkler G. The pathophysiological influence of leptin and the tumor necrosis factor system on maternal insulin resistance: negative correlation with anthropometric parameters of neonates in gestational diabetes. Gynecological Endocrinology. 2002;16(6):453-460. http://dx.doi.org/10.1080/713603159
https://doi.org/10.1080/713603159

14. Altinova A, Toruner F, Bozkurt N, Bukan N, Karakoc A, Yetkin I, Ayvaz G, Cakir N, Arslan M. Circulating concentrations of adiponectin and tumor necrosis factor-α in gestational diabetes mellitus. Gynecological Endocrinology. 2007;23(3):161-165. http://dx.doi.org/10.1080/09513590701227960
https://doi.org/10.1080/09513590701227960

15. GAO X, YANG H, ZHAO Y. Variations of tumor necrosis factor-α, leptin and adiponectin in mid-trimester of gestational diabetes mellitus. Chinese Medical Journal. 2008;121(8):701-705. http://dx.doi.org/10.1097/00029330-200804020-00008
https://doi.org/10.1097/00029330-200804020-00008

16. Bozkurt L, Göbl C, Baumgartner-Parzer S, Luger A, Pacini G, Kautzky-Willer A. Adiponectin and Leptin at Early Pregnancy: Association to Actual Glucose Disposal and Risk for GDM-A Prospective Cohort Study. International Journal of Endocrinology. 2018;2018:1-8. http://dx.doi.org/10.1155/2018/5463762
https://doi.org/10.1155/2018/5463762

17. McLachlan K, O’Neal D, Jenkins A, Alford F. Do adiponectin, TNFα, leptin and CRP relate to insulin resistance in pregnancy? Studies in women with and without gestational diabetes, during and after pregnancy. Diabetes/Metabolism Research and Reviews. 2006;22(2):131-138. http://dx.doi.org/10.1002/dmrr.591
https://doi.org/10.1002/dmrr.591

18. Suryanarayana K, Bhograj A, Nayak A, Murthy N, Dharmalingam M, Kalra P. Serum adiponectin levels in gestational diabetes mellitus. Indian Journal of Endocrinology and Metabolism. 2016;20(6):752. http://dx.doi.org/10.4103/2230-8210.192909
https://doi.org/10.4103/2230-8210.192909

19. Plows J, Stanley J, Baker P, Reynolds C, Vickers M. The Pathophysiology of Gestational Diabetes Mellitus. International Journal of Molecular Sciences. 2018;19(11):3342. http://dx.doi.org/10.3390/ijms19113342
https://doi.org/10.3390/ijms19113342

20. Gomes C, Torloni M, Gueuvoghlanian-Silva B, Alexandre S, Mattar R, Daher S. Cytokine Levels in Gestational Diabetes Mellitus: a Systematic Review of the Literature. American Journal of Reproductive Immunology. 2013;:n/a-n/a. http://dx.doi.org/10.1111/aji.12088
https://doi.org/10.1111/aji.12088

21. Abell S, De Courten B, Boyle J, Teede H. Inflammatory and Other Biomarkers: Role in Pathophysiology and Prediction of Gestational Diabetes Mellitus. International Journal of Molecular Sciences. 2015;16(12):13442-13473. http://dx.doi.org/10.3390/ijms160613442
https://doi.org/10.3390/ijms160613442

22. Greenhill C. The role of adiponectin in gestational diabetes mellitus. Nature Reviews Endocrinology. 2017;13(3):128. http://dx.doi.org/10.1038/nrendo.2017.6
https://doi.org/10.1038/nrendo.2017.6

23. Noakes T. So What Comes First: The Obesity or the Insulin Resistance? And Which Is More Important?. Clinical Chemistry. 2018;64(1):7-9. http://dx.doi.org/10.1373/clinchem.2017.282962
https://doi.org/10.1373/clinchem.2017.282962

24. Vernini J, Moreli J, Costa R, Negrato C, Rudge M, Calderon I. Maternal adipokines and insulin as biomarkers of pregnancies complicated by overweight and obesity. Diabetology & Metabolic Syndrome. 2016;8(1):. http://dx.doi.org/10.1186/s13098-016-0184-y
https://doi.org/10.1186/s13098-016-0184-y

25. Emre C. Adipocytokines in Particular Pregnancy Disorders. Annals of Clinical and Laboratory Research. 2015;3(4):. http://dx.doi.org/10.21767/2386-5180.100041
https://doi.org/10.21767/2386-5180.100041

26. Genc S, Kusku Kiraz Z, Dervisoglu E, Oztop N, Dinccag N, Gurdol F. The Relation Of Oxidative Stress Biomarkers With Proinflammatory Cytokines In Gestational Diabetes. Clinical Investigation. 2017;07(01):. http://dx.doi.org/10.4172/clinical-investigation.1000110
https://doi.org/10.4172/Clinical-Investigation.1000110

27. Gonzalez Y, Herrera M, Soldevila G, Garcia-Garcia L, Fabián G, Pérez-Armendariz E, Bobadilla K, Guzmán-Beltrán S, Sada E, Torres M. High glucose concentrations induce TNF-α production through the down-regulation of CD33 in primary human monocytes. BMC Immunology. 2012;13(1):19. http://dx.doi.org/10.1186/1471-2172-13-19
https://doi.org/10.1186/1471-2172-13-19

28. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory Cytokine Concentrations Are Acutely Increased by Hyperglycemia in Humans. Circulation. 2002;106(16):2067-2072. http://dx.doi.org/10.1161/01.cir.0000034509.14906.ae
https://doi.org/10.1161/01.CIR.0000034509.14906.AE

29. Amirian A, Mahani M, Abdi F. Role of interleukin-6 (IL-6) in predicting gestational diabetes mellitus. Obstetrics & Gynecology Science. 2020;63(4):407-416. http://dx.doi.org/10.5468/ogs.20020
https://doi.org/10.5468/ogs.20020

30. Kramer C, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia. 2019;62(6):905-914. http://dx.doi.org/10.1007/s00125-019-4840-2
https://doi.org/10.1007/s00125-019-4840-2

31. Olson A. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN Molecular Biology. 2012;2012:1-12. http://dx.doi.org/10.5402/2012/856987
https://doi.org/10.5402/2012/856987

32. Kroder G, Bossenmaier B, Kellerer M, Capp E, Stoyanov B, Mühlhöfer A, Berti L, Horikoshi H, Ullrich A, Häring H. Tumor necrosis factor-alpha- and hyperglycemia-induced insulin resistance. Evidence for different mechanisms and different effects on insulin signaling.. Journal of Clinical Investigation. 1996;97(6):1471-1477. http://dx.doi.org/10.1172/jci118569
https://doi.org/10.1172/JCI118569

33. Kang J, Boonanantanasarn K, Baek K, Woo K, Ryoo H, Baek J, Kim G. Erratum: Institutions, Correspondence, Figures & Legends Correction. Hyperglycemia increases the expression levels of sclerostin in a reactive oxygen species- and tumor necrosis factor-alpha-dependent manner. Journal of Periodontal & Implant Science. 2015;45(4):156. http://dx.doi.org/10.5051/jpis.2015.45.4.156
https://doi.org/10.5051/jpis.2015.45.4.156

34. Fuster J, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circulation Research. 2016;118(11):1786-1807. http://dx.doi.org/10.1161/circresaha.115.306885
https://doi.org/10.1161/CIRCRESAHA.115.306885

35. Wei W, Zhang X. Expression of ADP and TNF-α in patients with gestational diabetes mellitus and its relationship with pregnancy outcomes. Experimental and Therapeutic Medicine. 2020;20: 2184-2190. http://dx.doi.org/10.3892/etm.2020.8952
https://doi.org/10.3892/etm.2020.8952

36. Vesentini G, Barbosa A, Damasceno D, Marini G, Piculo F, Matheus S, Hallur R, Nunes S, Catinelli B, Magalhães C, Costa R, Abbade J, Corrente J, Calderon I, Rudge M. Alterations in the structural characteristics of rectus abdominis muscles caused by diabetes and pregnancy: A comparative study of the rat model and women. PLOS ONE. 2020;15(4):e0231096. http://dx.doi.org/10.1371/journal.pone.0231096
https://doi.org/10.1371/journal.pone.0231096

37. Colomiere M, Permezel M, Lappas M. Diabetes and obesity during pregnancy alter insulin signalling and glucose transporter expression in maternal skeletal muscle and subcutaneous adipose tissue. Journal of Molecular Endocrinology. 2009;44(4):213-223. http://dx.doi.org/10.1677/jme-09-0091
https://doi.org/10.1677/JME-09-0091

38. Tumurbaatar B, Poole A, Olson G, Makhlouf M, Sallam H, Thukuntla S, Kankanala S, Ekhaese O, Gomez G, Chandalia M, Abate N. Adipose Tissue Insulin Resistance in Gestational Diabetes. Metabolic Syndrome and Related Disorders. 2017;15(2):86-92. http://dx.doi.org/10.1089/met.2016.0124
https://doi.org/10.1089/met.2016.0124

39. Sykiotis G, Papavassiliou A. Serine Phosphorylation of Insulin Receptor Substrate-1: A Novel Target for the Reversal of Insulin Resistance. Molecular Endocrinology. 2001;15(11):1864-1869. http://dx.doi.org/10.1210/mend.15.11.0725
https://doi.org/10.1210/mend.15.11.0725

40. Sevillano J, de Castro J, Bocos C, Herrera E, Ramos M. Role of Insulin Receptor Substrate-1 Serine 307 Phosphorylation and Adiponectin in Adipose Tissue Insulin Resistance in Late Pregnancy. Endocrinology. 2007;148(12):5933-5942. http://dx.doi.org/10.1210/en.2007-0352
https://doi.org/10.1210/en.2007-0352

41. Draznin B. Molecular Mechanisms of Insulin Resistance: Serine Phosphorylation of Insulin Receptor Substrate-1 and Increased Expression of p85 : The Two Sides of a Coin. Diabetes. 2006;55(8):2392-2397. http://dx.doi.org/10.2337/db06-0391
https://doi.org/10.2337/db06-0391

42. Catalano P. Trying to understand gestational diabetes. Diabetic Medicine. 2014;31(3):273-281. http://dx.doi.org/10.1111/dme.12381
https://doi.org/10.1111/dme.12381

43. Gao Y, She R, Sha W. Gestational diabetes mellitus is associated with decreased adipose and placenta peroxisome proliferator-activator receptor γ expression in a Chinese population. Oncotarget. 2017;8(69):113928-113937. http://dx.doi.org/10.18632/oncotarget.23043
https://doi.org/10.18632/oncotarget.23043