Prof. Z.D. Semidotskaya, prof. T.D. Zvjagintseva*, PHD I.A. Chernyakova, PHD M.Yu. Neffa, A.E. Chernyakova.
Kharkiv State Medical University
*Kharkiv Medical Academy of Postgraduate Education.
The article describes the current understanding of the role of the microbial community colonizing the human body (microbiota) in the functioning of all organs and systems of the host (macrobiont), in particular, brain,cardiovascular, respiratory, urinary systems, unity of the microbiota and macrobiont (holobiont). The molecular mechanisms of microbial communication with each other and with the macrobiont, coordination of microbiota behavior, and the possibilities of their use for targeted antimicrobial therapy are discussed. Information is given on the mechanisms of protection against microbial pathogens developed in the process of co-evolution of microorganisms and man, the system of toll-like receptors, the problem of using their agonists in the treatment of infectious and neoplastic diseases. The causes of microbiota damage, the development of dysbiosis, its consequences, among which special attention is paid to the emergence of antibiotic resistance, promising strategies to overcome it, are highlighted.
Key Words: microbiota, holobiont, “feeling of quorum”, toll-like receptors, dysbiosis, antibiotic resistance, therapeutic strategies.
https://dx.doi.org/10.15407/internalmed2019.01.004
1. Berezhnaja NM, Sepiashvili RI. Fiziologija TOLL-podobnyh receptorov – reguljatorov vrozhdjonnogo i priobretjonnogo immuniteta. Allergologija i immunologija. 2015;16(1):165-168. Russian. | ||||
2. Blejzer M. Zhizn’ posle antibiotikov. Chem nam grozit ustojchivost’ bakterij i narushenie mikroflory. Zaharov AV, translator. Moscow: Izdatelstvo E; 2016. 236 p. Russian. | ||||
3. Bogodukhovа ES., Bаyke EE. [Polymorphism of genes of Toll-like receptors as a potential factor of predisposition to tuberculosis]. Tuberculosis and Lung Diseases. 2018;96(9):11-16. (In Russ.) https://doi.org/10.21292/2075-1230-2018-96-9-11-16 https://doi.org/10.21292/2075-1230-2018-96-9-11-16 |
||||
4. Bojko VV, Ivanova JuV, Gholovina OA. Antybiotykorezystentnistj osnovnykh zbudnykiv intraabdominaljnoji infekciji (oghljad literatury i vlasni sposterezhennja). [Antibiotic resistance of major intraabdominal infections agents (literature review and original study)]. Surgery of Ukraine. 2016;4(60):108-116. Ukrainian. | ||||
5. Bykova VP, Bakhtin AA. [The epithelial structures of the upper respiratory tract mucosaе are a link between innate and adaptive immunity]. Rossiyskaya rinologiya. 2016;24(1):43-49. https://doi.org/10.17116/rosrino201624143-49 https://doi.org/10.17116/rosrino201624143-49 |
||||
6. Vorobey ES, Voronkova OS, Vinnikov AI. [Bacterial biofilms. Bacteria quorum sensing in biofilms]. Visnyk of Dnipropetrovsk University. Biology. Ecology. 2012;20(1):13-22. Ukrainian https://doi.org/10.15421/011202 |
||||
7. Ditert R. Chelovecheskij superorganizm: kak mikrobiom izmenil nashi predstavlenija o zdorovom obraze zhizni. Per. s angl. Svechnikova V. Moskow: KoLibri, Azbuka-Attikus; 2016. 415 p. Russian. | ||||
8. Drapkina OM, Shirobokikh OE. [Role of Gut Microbiota in the Pathogenesis of Cardiovascular Diseases and Metabolic Syndrome] Rol’ kishechnoj mikrobioty v patogeneze serdechno-sosudistyh zabolevanij i metabolicheskogo sindroma. Racional’naja farmakoterapija v kardiologii. 2018;14(4):567-574. Russian. https://doi.org/10.20996/1819-6446-2018-14-4-567-574 |
||||
9. Ilyina EN, Olekhnovich EI, Pavlenko AV. [The gut microbiota resistome provides development of drug resistance in causative agents of human infectious diseases] Rezistom mikrobioty kishechnika kak istochnik formirovanija lekarstvennoj ustojchivosti vozbuditelej infekcionnyh boleznej cheloveka. Patogenez. 2017;15(3):20-32. Russian. | ||||
10. Jong J. Kak mikroby upravljajut nami. Tajnye vlastiteli zhizni na Zemle. Per. s angl. Inozemceva P., Kovylin V. Moskow: Izd. AST; 2016. 352 p . Russian. | ||||
11. Kabanova AA, Pohodenko-Chudakova IO, Plotnikov FV. Sposoby vozdejstviya na mikrobnye bioplenki. Sovremennoe sostoyanie voprosa. Visnik problem biologiyi i medicini. 2015;4(2):20-24. Russian. | ||||
12. Kovalenko VN, Gavrilenko TN, Ryzhkova NA, Parhomenko AN, Ilenko IN, Lomakovskij AN. Receptory vrozhdennogo immuniteta pri ateroskleroze i revmatoidnom artrite. Zhurnal Nacionalnoyi akademiyi medichnih nauk Ukrayini. 2015;21(2):170-180. Russian. | ||||
13. Korovkina ES, Kazharova ES. [The toll-like receptors role in inflammatory diseases of the bronchopulmonary system pathogenesis] Rol’ toll-podobnyh receptorov v patogeneze vospalitel’nyh zabolevanij ljogkih. Infekcija i immunitet. 2016;6(2):109-116. Russian. https://doi.org/10.15789/2220-7619-2016-2-109-116 |
||||
14. Larin OS, Tkach SM, Tymoshenko OS, Kuzenko YuH. Modyfikatsiia kyshkovoi mikrobioty i fekalna transplantatsiia yak perspektyvni metody likuvannia ozhyrinnia, insulinorezystentnosti i tsukrovoho diabetu 2 typu. Klinichna endokrynolohiia ta endokrynna khirurhiia. 2016;2(54):20-26.Ukrainian. | ||||
15. Lukichjov BG, Rumjancev ASh, Akimenko V. Mikrobiota kishechnika i hronicheskaja bolezn’ pochek. Soobshhenie pervoe. Nefrologija. 2018;22(4):57-73. Russian. | ||||
16. Mayer E. Vtoroj mozg: kak mikroby v kishechnike upravljajut nashim nastroeniem, reshenijami, zdorov’em. Per. s angl. Egorov V. Moskow: Izd. ANF; 2018. 348 p. Russian. | ||||
17. Rjabov SI, Rakitjanskaja IA, editors. Nefrologija: rukovodstvo dlja vrachej. V 2 tomah. Zabolevanija pochek. Tom 1. SPb: SpecLit; 2013. 767 p. Russian. | ||||
18. Ustinov AV. Novyj doklad VOZ po antibiotikorezistentnosti. Ukr. med. chasopis. 2018; P. 2 . Ukrainian. | ||||
19. Fadeenko GD, Bogun LV. Disbioz kishechnika v praktike vracha-internista. Suchasna gastroenterologіja. 2013;1(69):89-96. Russian. | ||||
20. Fedoseenko SV, Ogorodova LM, Deev IA, Taht V, Popenko AS, Karnaushkina MA. Analiz geneticheskih determinant antibiotikoustojchivosti kishechnoj mikrobioty bol’nyh hronicheskoj obstruktivnoj bolezn’ju ljogkih. Klin. mikrobiol. himioter. 2015;17(2):157-166. Russian. | ||||
21. Hmel’ IA, Metlickaja AZ. Quorum sensing reguljacija jekspressii genov – perspektivnaja mishen’ dlja sozdanija lekarstv protiv patogennosti bakterij. Molekul. Biologija . 2006;40:195-210. Russian. | ||||
22. Berenson CS, Kruzel RL, Wrona CT, Mammen MJ, Sethi S. Impaired innate COPD alveolar macrophage responses and Toll-like receptor 9-polymorphismus. PLoS ONE. 2015;10(9):30-31. https://doi.org/10.1371/journal.pone.0134209. https://doi.org/10.1371/journal.pone.0134209 PMid:26361369 PMCid:PMC4567310 |
||||
23. Brennan JJ, Gilmore TD. Evolutionary origins of Toll-like Receptor Signaling. Mol Biol Evol. 2018;35(7):1576-1587. https://doi.org/10.1093/molbev/msy050. https://doi.org/10.1093/molbev/msy050 PMid:29590394 |
||||
24. Brown ED, Wright CD. Antibacterial drug. Discavery in the resistan era. Nature. 2016;529(7586):336-343. https://doi.org/10.1038/nature17042. https://doi.org/10.1038/nature17042 PMid:26791724 |
||||
25. Cole JE, Kassiretidi C, Monaco C. Toll-lice receptors in atherosclerosis : a Pandor s box of advances and controversies. Trends Pharmacol. Sci. 2013;34:529-636. https://doi.org/10.1016/j.tips.2013.09.008. https://doi.org/10.1016/j.tips.2013.09.008 PMid:24139612 |
||||
26. Cyranovski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016;339:479-489. https://doi.org/10.1038/nature.2016.20988. https://doi.org/10.1038/nature.2016.20988 PMid:27882996 |
||||
27. Dickson RP, Erb – Downward JR, Martinez FJ , Hulfnagle GB. The microbiome and the respiratory tract. Ann Rev Physiol. 2016;78:481-504. https://doi.org/10.1146/annurev-physiol-021115-105238. https://doi.org/10.1146/annurev-physiol-021115-105238 PMid:26527186 PMCid:PMC4751994 |
||||
28. Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O. Evolution of genetic techniques: past, present, and beyond. Biomed Res Int. 2015;2015:461524. doi: 10.1155/2015/461524. https://doi.org/10.1155/2015/461524 PMid:25874212 PMCid:PMC4385642 |
||||
29. Fetzner S. Quorum quenching enzymes. J. Biothechnol. 2015;201:2-14. https://doi.org/10.1016/j.jbiotec.2014.09.001. https://doi.org/10.1016/j.jbiotec.2014.09.001 PMid:25220028 |
||||
30. Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe. 2015;17:595-602. https://doi.org/10.1016/j.chom.2015.04.007 PMid:25974301 PMCid:PMC4443817 |
||||
31. Galla S, Chakraborty BM, Vijay-Kumar JB. Microbiotal-Host interaction and hypertension. PHYSIOLOGY. 2017;32:224-233. https://doi.org/10.1152/physiol.00003.2017. https://doi.org/10.1152/physiol.00003.2017 PMid:28404738 PMCid:PMC6347099 |
||||
32. Golkar Z, Bagazza O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J. Infect Dev Ctries. 2014;8(2):129. https://doi.org/10.3855/jidc.3573. https://doi.org/10.3855/jidc.3573 PMid:24518621 |
||||
33. Grandelement C, Tanniers M, Morena, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 2016;40(1):86-116. https://doi.org/10.1093/femsre/fuv038. https://doi.org/10.1093/femsre/fuv038 PMid:26432822 |
||||
34. Gu J, Liu Y, Xie B. Ye P, Huang J. Roles of toll-like receptors: from inflammation to lung cancer progression. Biomed Rep. 2018;8(2):126-132. https://doi.org/10.3892/br.2017.1034. https://doi.org/10.3892/br.2017.1034 |
||||
35. Gupta P, Sarcar S, Das B. Bhattacharjee S, Tribedi P. .Biofilm pathogenesis and prevention – a journey to break the wall: a review. Arch. Microbiol. 2016;198(1):1-15. https://doi.org/10.1007/s00203-015-1148-6. https://doi.org/10.1007/s00203-015-1148-6 PMid:26377585 |
||||
36. Heussler GE, Tool GA. Friendly fire: biological functions and consequences of chromosomal targeting by CRISPR – Cas systems. J. Bacteriol. 2016;198:1481-1486. https://doi.org/10.1128/jb.00086-16. https://doi.org/10.1128/JB.00086-16 PMid:26929301 PMCid:PMC4859606 |
||||
37. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. Bacterial biofilm and associated infections. J.Clin. Med. Assoc. 2018;81(1):7-11. https://doi.org/10.1016/j.jcma.2017.07.012. https://doi.org/10.1016/j.jcma.2017.07.012 PMid:29042186 |
||||
38. Lee JR, Hamady L, Lozupone C. Toussaint NC, Ling L, Pamer E, Suthanthiran M.. Gut microbial community structure and complications after kidney transplantation: a pilot study. Transplantation. 2014;98:697-705. https://doi.org/10.1097/tp.0000000000000370. https://doi.org/10.1097/TP.0000000000000370 PMid:25289916 PMCid:PMC4189837 |
||||
39. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, Zhang W, Weldon R, Auguste K, Yang L, Liu X, Chen L, Yang X, Zhu B, Cai J. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017 Feb 1;5(1):14. doi: 10.1186/s40168-016-0222-x. https://doi.org/10.1186/s40168-016-0222-x PMid:28143587 PMCid:PMC5286796 |
||||
40. Liu YC, Chanm KG, Chang CY. Modulation of host biology by Pseudomonas aeruginosa quorum sensing signal molecules: messengers or traitors. Front. Microbiol. 2015;6:1712-1726. https://doi.org/10.3389/fmicb.2015.01226 https://doi.org/10.3389/fmicb.2015.01226 |
||||
41. Martinez JL. General principles of antibiotic resistance in bacteria. Drug Discavery Today: Technologist. 2014;11:33-39. https://doi.org/10.1016/j.ddtec.2014.02.001 PMid:24847651 |
||||
42. Medzhitov R, Janeway C. Innate immunity. N. Engl. J. Med. 2000;343:338-344. https://doi.org/10.1016/j.ddtec.2014.02.001. https://doi.org/10.1016/j.ddtec.2014.02.001 PMid:24847651 |
||||
43. Noel S, Martiuna-Lingua MN, Bandapalle S. et al. Intestinal microbiota – kidney cross-talk in acute kidney injury and chronic kidney disease. Nephron Clin. Pract. 2014;127:139 – 143. https://doi.org/10.1159/000363209 PMid:25343838 PMCid:PMC4985236 |
||||
44. Okshevsky M. Regina VR, Meyer RL. Extracellular DNA as a target for biofilm control. Curr. Opin. Biotechnol. 2015;33:73-80. https://doi.org/10.1016/j.ddtec.2014.02.001. https://doi.org/10.1016/j.ddtec.2014.02.001 PMid:24847651 |
||||
45. Perry JA, Westman EL, Wright GD. The antibiotic resistome: What s new. Curr Opin Microbiol. 2014;21:45-50. https://doi.org/10.1016/j.mib.2014.09.002. https://doi.org/10.1016/j.mib.2014.09.002 PMid:25280222 |
||||
46. Pluznick J. Microbial Short-Chain Fatty Acids and Blood Pressure Regulation. Curr. Hypertens. Rep. 2017;19(4):22-25. https://doi.org/10.1007/s11906-017-0722-5. https://doi.org/10.1007/s11906-017-0722-5 PMid:28315048 PMCid:PMC5584783 |
||||
47. Remy B, Mion S, Pleuer L, Eliasy M, Chabriere E, DaudeInterference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective.Front. Pharmacol. 2018;9:203. https://doi.org/10.1051/medsci/2018310. https://doi.org/10.1051/medsci/2018310 PMid:30672458 |
||||
48. Rosenberg E. The hologenom theory of evolution contains Lamarckian aspects within a Darvinian framework. Environ. Microbiol. 2009;11(12):2952-2959. https://doi.org/10.1111/j.1462-2920.2009.01995.x. https://doi.org/10.1111/j.1462-2920.2009.01995.x PMid:19573132 |
||||
49. Santisteban MM, Kim S, Pepine CJ, Razada ML. Braingut-bone marrow axis: implications for hypertension and related therapeutics. Circ.Res. 2016;118:1327-1336. https://doi.org/10.1161/circresaha.116.307709. https://doi.org/10.1161/CIRCRESAHA.116.307709 PMid:27081113 PMCid:PMC4834860 |
||||
50. Shreiner AB, Kao JY, Young WB. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 2015;31(1):69-75. https://doi.org/10.1097/MOG.0000000000000139 PMid:25394236 PMCid:PMC4290017 |
||||
51. Singh S, Singh SK, Chowdhurg J, Singh R. Unterstanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. The Open Microbiol Journal 2017;V.11:53-62. https://doi.org/10.2174/1874285801711010053. https://doi.org/10.2174/1874285801711010053 PMid:28553416 PMCid:PMC5427689 |
||||
52. Smith M, Kelly C, Alm E. How to regulate faecal transplants.Nature. 2014;606:290 – 291. https://doi.org/10.1038/506290a. https://doi.org/10.1038/506290a PMid:24558658 |
||||
53. Subirats J, Sanches-Melsio A, Borregos M, Balcázar JL, Simonet P. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. Internat. J. Antimicrobial Agents. 2016;48(2):163-167. https://doi.org/10.1016/j.ijantimicag.2016.04.028. https://doi.org/10.1016/j.ijantimicag.2016.04.028 PMid:27312355 |
||||
54. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ. Res. 2017;120(7):1183- 1196. https://doi.org/10.1161/circresaha.117.309715. https://doi.org/10.1161/CIRCRESAHA.117.309715 PMid:28360349 PMCid:PMC5390330 |
||||
55. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL. Chronic kidney disease alters intestinal microbial flora. Kidney Int 2013;83:308-315. https://doi.org/10.1038/ki.2012.345. https://doi.org/10.1038/ki.2012.345 PMid:22992469 |
||||
56. Ventola CL. The antibiotic Resistance Crisis. Pharmacy and Therapie. 2015;40(4):277-283. https://doi.org/10.1016/j.medine.2014.10.001. https://doi.org/10.1016/j.medine.2014.10.001 |
||||
57. Vila J. Microbiota transplantation and/or CRISPR. Cas in the battle against antimicrobial resistance. Clin. Microbiol. Inf. 2018;7:684-688. https://doi.org/10.1016/j.cmi.2018.03.043. https://doi.org/10.1016/j.cmi.2018.03.043 PMid:29653191 |
||||
58. Wing MR, Patel SS, Ramesani A, Raj DS. Gut microbiome in chronic kidney disease. Exp. Physiol. 2016;101:477-479. https://doi.org/10.1113/ep085283. https://doi.org/10.1113/EP085283 PMid:26337794 |
||||
59. Yarandi SS, Peterson DA, Treisman GJ. Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J. Neurogastroenterol Motil. 2016;22(2):201-212. https://doi.org/10.5056/jnm15146. https://doi.org/10.5056/jnm15146 PMid:27032544 PMCid:PMC4819858 |